52401 |
Find Amplitude, Period, and Phase Shift |
y=cos(-2x+pi)-1 |
y=cos(-2x+π)-1y=cos(−2x+π)−1 |
52402 |
Convert from Radians to Degrees |
2*180/pi |
2⋅180π2⋅180π |
52403 |
Convert from Radians to Degrees |
sin(( square root of 3)/2) |
sin(√32)sin(√32) |
52404 |
Verify the Identity |
x^3+y^3=(x+y)(x^2-xy+y^2) |
x3+y3=(x+y)(x2-xy+y2)x3+y3=(x+y)(x2−xy+y2) |
52405 |
Convert from Degrees to Radians |
arccot(cot((5pi)/4)) |
arccot(cot(5π4))arccot(cot(5π4)) |
52406 |
Find the Cotangent Given the Point |
( square root of 2, square root of 2) |
(√2,√2)(√2,√2) |
52407 |
Find Amplitude, Period, and Phase Shift |
y=sin(3x+2pi) |
y=sin(3x+2π)y=sin(3x+2π) |
52408 |
Find the Cosine of the Angle |
135 degrees |
135°135° |
52409 |
Find Amplitude, Period, and Phase Shift |
y=8/9cos((pix)/2) |
y=89cos(πx2)y=89cos(πx2) |
52410 |
Convert from Radians to Degrees |
-12pirad |
-12π−12π radians |
52411 |
Find the Coterminal Angle |
13/2pi |
132π132π |
52412 |
Find Amplitude, Period, and Phase Shift |
f(x)=2sin(2x)-pi/2 |
f(x)=2sin(2x)-π2f(x)=2sin(2x)−π2 |
52413 |
Solve for θ in Degrees |
3tan(theta)+1=0 |
3tan(θ)+1=03tan(θ)+1=0 |
52414 |
Verify the Identity |
sin(A+B)=cos(pi/2-(A+B)) |
sin(A+B)=cos(π2-(A+B))sin(A+B)=cos(π2−(A+B)) |
52415 |
Find Amplitude, Period, and Phase Shift |
y=1/4sin(x-(2pi)/3) |
y=14sin(x-2π3)y=14sin(x−2π3) |
52416 |
Verify the Identity |
(csc(-x))/(sec(-x))=-cot(x) |
csc(-x)sec(-x)=-cot(x)csc(−x)sec(−x)=−cot(x) |
52417 |
Solve for x in Degrees |
3tan(x)sin(x)+2sin(x)=0 |
3tan(x)sin(x)+2sin(x)=03tan(x)sin(x)+2sin(x)=0 |
52418 |
Find the Sine of the Angle |
(5pi)/4 |
5π45π4 |
52419 |
Convert from Radians to Degrees |
-6pirad |
-6π−6π radians |
52420 |
Find the Length of b |
tri{}{30}{4}{60}{}{90} |
SideAngleb=c=4a=A=30B=60C=90SideAngleb=c=4a=A=30B=60C=90 |
52421 |
Solve for x in Radians |
2sin(x)^2=1 |
2sin2(x)=12sin2(x)=1 |
52422 |
Solve for x in Degrees |
5tan(x)sin(x)-4sin(x)=0 |
5tan(x)sin(x)-4sin(x)=05tan(x)sin(x)−4sin(x)=0 |
52423 |
Convert from Radians to Degrees |
(10pi)/9rad |
10π910π9 radians |
52424 |
Find the Sine of the Angle |
60 |
6060 |
52425 |
Find Amplitude, Period, and Phase Shift |
y=4cos((6pix)/7-1/2) |
y=4cos(6πx7-12)y=4cos(6πx7−12) |
52426 |
Expand the Trigonometric Expression |
cot(-x)cos(-x)+sin(-x) |
cot(-x)cos(-x)+sin(-x)cot(−x)cos(−x)+sin(−x) |
52427 |
Solve for B in Degrees |
5tan(B)+7=2tan(B)+4 |
5tan(B)+7=2tan(B)+45tan(B)+7=2tan(B)+4 |
52428 |
Expand Using Sum/Difference Formulas |
3(x+2) |
3(x+2)3(x+2) |
52429 |
Solve for a in Degrees |
tan(a)=73.7/39.4 |
tan(a)=73.739.4tan(a)=73.739.4 |
52430 |
Find Amplitude, Period, and Phase Shift |
y=1/4cos((2x)/7+1/3) |
y=14cos(2x7+13)y=14cos(2x7+13) |
52431 |
Solve for θ in Degrees |
cos(theta)^2=1/2 |
cos2(θ)=12cos2(θ)=12 |
52432 |
Convert to Trigonometric Form |
tan(90-theta) |
tan(90-θ)tan(90−θ) |
52433 |
Verify the Identity |
x^3-2=(x- cube root of 2)(x^2+ cube root of 2x+ cube root of 4) |
x3-2=(x-3√2)(x2+3√2x+3√4)x3−2=(x−3√2)(x2+3√2x+3√4) |
52434 |
Find Amplitude, Period, and Phase Shift |
y=4cos(3pix+2/5) |
y=4cos(3πx+25)y=4cos(3πx+25) |
52435 |
Solve for θ in Degrees |
sec(theta)^2-9=0 |
sec2(θ)-9=0sec2(θ)−9=0 |
52436 |
Solve for θ in Radians |
cos(2theta-pi/2)=-1 |
cos(2θ-π2)=-1cos(2θ−π2)=−1 |
52437 |
Find Amplitude, Period, and Phase Shift |
y=3sin(theta/4)-2 |
y=3sin(θ4)-2y=3sin(θ4)−2 |
52438 |
Solve for A in Degrees |
5cos(A)+8=3cos(A)+6 |
5cos(A)+8=3cos(A)+65cos(A)+8=3cos(A)+6 |
52439 |
Find Amplitude, Period, and Phase Shift |
f(x)=-1/2cos(4(x+pi/4))+1 |
f(x)=-12cos(4(x+π4))+1f(x)=−12cos(4(x+π4))+1 |
52440 |
Find Amplitude, Period, and Phase Shift |
y=-2cos(2x+pi)-1 |
y=-2cos(2x+π)-1 |
52441 |
Find Amplitude, Period, and Phase Shift |
y=-5tan(3x+pi) |
y=-5tan(3x+π) |
52442 |
Find Amplitude, Period, and Phase Shift |
y=1/2cos((4pix)/5-5pi) |
y=12cos(4πx5-5π) |
52443 |
Expand Using Sum/Difference Formulas |
(2x+5)(2x-5) |
(2x+5)(2x-5) |
52444 |
Find the Cosine of the Angle |
-(5pi)/6 |
-5π6 |
52445 |
Find the Cotangent Given the Point |
( square root of 5,2) |
(√5,2) |
52446 |
Find the Other Trig Values in Quadrant II |
csc(theta) = square root of 2 |
csc(θ)=√2 |
52447 |
Find the Reference Angle |
cot(-pi/4) |
cot(-π4) |
52448 |
Find the Cosine of the Angle |
-pi/6 |
-π6 |
52449 |
Convert from Radians to Degrees |
arctan(-1/( square root of 3)) |
arctan(-1√3) |
52450 |
Solve for x in Degrees |
4sin(x)cos(x)+cos(x)=0 |
4sin(x)cos(x)+cos(x)=0 |
52451 |
Find Trig Functions Using Identities |
tan(theta)=-3/5 , sec(theta)>0 |
tan(θ)=-35 , sec(θ)>0 |
52452 |
Solve for x in Degrees |
2sin(x)- square root of 3=0 |
2sin(x)-√3=0 |
52453 |
Convert from Radians to Degrees |
3*180/pi |
3⋅180π |
52454 |
Find the Other Trig Values in Quadrant II |
sec(theta)=- square root of 5 |
sec(θ)=-√5 |
52455 |
Find the Sine of the Angle |
(7pi)/6 |
7π6 |
52456 |
Solve for x in Radians |
csc(x)=- square root of 2 |
csc(x)=-√2 |
52457 |
Verify the Identity |
12 root of 16 = cube root of fourth root of 16 |
12√16=3√4√16 |
52458 |
Solve for θ in Degrees |
6sin(theta)+7=0 |
6sin(θ)+7=0 |
52459 |
Convert from Radians to Degrees |
cos(pi/12) |
cos(π12) |
52460 |
Verify the Identity |
sin(x)^2=sin(x)^2 |
sin2(x)=sin2(x) |
52461 |
Find the Reference Angle |
cot(150 degrees ) |
cot(150°) |
52462 |
Convert from Degrees to Radians |
130deg |
130 degrees |
52463 |
Convert from Radians to Degrees |
-2pirad |
-2π radians |
52464 |
Find the Coterminal Angle |
1740 degrees |
1740° |
52465 |
Solve for x in Degrees |
2sin(x)cos(x)=cos(x) |
2sin(x)cos(x)=cos(x) |
52466 |
Convert from Radians to Degrees |
(2pi)/7rad |
2π7 rad |
52467 |
Solve for x in Degrees |
7tan(x)sin(x)=-6sin(x) |
7tan(x)sin(x)=-6sin(x) |
52468 |
Find the Cotangent Given the Point |
(1/5,-(2 square root of 6)/5) |
(15,-2√65) |
52469 |
Find the Length of c |
tri{4}{}{}{}{3}{90} |
SideAngleb=4c=a=3A=B=C=90 |
52470 |
Find the Length of a |
tri{}{45}{5}{45}{}{90} |
SideAngleb=c=5a=A=45B=45C=90 |
52471 |
Find the Trig Value |
csc(theta)=5 with pi/2<theta<pi |
csc(θ)=5 with π2<θ<π |
52472 |
Find the Cosine Given the Point |
((2 square root of 5)/5,-( square root of 5)/5) |
(2√55,-√55) |
52473 |
Find Amplitude, Period, and Phase Shift |
y=1/2cos(2x-pi)+2 |
y=12cos(2x-π)+2 |
52474 |
Convert to Trigonometric Form |
2sin(10 degrees )cos(10 degrees ) |
2sin(10°)cos(10°) |
52475 |
Convert from Radians to Degrees |
-5pirad |
-5π radians |
52476 |
Solve for C in Degrees |
-5cos(C)-1=2cos(C)+3 |
-5cos(C)-1=2cos(C)+3 |
52477 |
Find the Sine of the Angle |
(5pi)/3 |
5π3 |
52478 |
Find the Tangent of the Angle |
(5pi)/3 |
5π3 |
52479 |
Verify the Identity |
2cot(x)csc(x)=1/(sec(x)-1)+1/(sec(x)+1) |
2cot(x)csc(x)=1sec(x)-1+1sec(x)+1 |
52480 |
Solve for x in Degrees |
cos(x)+ square root of 3=-cos(x) |
cos(x)+√3=-cos(x) |
52481 |
Expand Using Sum/Difference Formulas |
(3+4x)(3-4x) |
(3+4x)(3-4x) |
52482 |
Expand Using Sum/Difference Formulas |
cos(60 degrees -45 degrees ) |
cos(60°-45°) |
52483 |
Solve for x in Degrees |
tan(x)sin(x)+4sin(x)=0 |
tan(x)sin(x)+4sin(x)=0 |
52484 |
Solve for θ in Degrees |
6tan(theta)^2-10tan(theta)+1=-5tan(theta) |
6tan2(θ)-10tan(θ)+1=-5tan(θ) |
52485 |
Solve for θ in Degrees |
6sin(theta)^2-17sin(theta)+14=-4sin(theta)+9 |
6sin2(θ)-17sin(θ)+14=-4sin(θ)+9 |
52486 |
Verify the Identity |
(sin(x)^2-cos(x)^2)/(sin(x)-cos(x))=sin(x)+cos(x) |
sin2(x)-cos2(x)sin(x)-cos(x)=sin(x)+cos(x) |
52487 |
Find the Secant Given the Point |
(-2/7,(3 square root of 5)/7) |
(-27,3√57) |
52488 |
Convert from Radians to Degrees |
2/3rad |
23 rad |
52489 |
Convert to Rectangular Coordinates |
(6 square root of 3,(7pi)/6) |
(6√3,7π6) |
52490 |
Solve for θ in Degrees |
8tan(theta)^2+10tan(theta)+10=7 |
8tan2(θ)+10tan(θ)+10=7 |
52491 |
Solve for x in Radians |
2sin(pi/3x) = square root of 2 |
2sin(π3x)=√2 |
52492 |
Find the Reference Angle |
cot(330 degrees ) |
cot(330°) |
52493 |
Verify the Identity |
(sin(x))(cot(x)+cos(x)tan(x))=cos(x)+sin(x)^2 |
(sin(x))(cot(x)+cos(x)tan(x))=cos(x)+sin2(x) |
52494 |
Solve for θ in Degrees |
2cot(theta)-3=0 |
2cot(θ)-3=0 |
52495 |
Find the Value Using the Unit Circle |
cot(-(5pi)/4) |
cot(-5π4) |
52496 |
Find Amplitude, Period, and Phase Shift |
y=1/2sin(1/2x+pi/2) |
y=12sin(12x+π2) |
52497 |
Find the Other Trig Values in Quadrant I |
sin(60 degrees )=( square root of 3)/2 |
sin(60°)=√32 |
52498 |
Verify the Identity |
((1+cos(A))(1-cos(A)))/(sin(A))=sin(A) |
(1+cos(A))(1-cos(A))sin(A)=sin(A) |
52499 |
Find the Cosecant Given the Point |
(- square root of 3,1) |
(-√3,1) |
52500 |
Verify the Identity |
(tan(theta))/(cot(theta))=tan(theta)^2 |
tan(θ)cot(θ)=tan2(θ) |