Popular Problems
Rank Topic Problem Formatted Problem
52201 Convert to Degrees, Minutes, and Seconds 2.32rad 2.322.32 rad
52202 Verify the Identity x^2-1=(x-1)(x+1) x2-1=(x-1)(x+1)x21=(x1)(x+1)
52203 Find the Reference Angle sin((3pi)/2) sin(3π2)sin(3π2)
52204 Find Trig Functions Using Identities tan(theta)=-3/5 , cos(theta)>0 tan(θ)=-35tan(θ)=35 , cos(θ)>0cos(θ)>0
52205 Find the Cosecant Given the Point ( square root of 7,3) (7,3)(7,3)
52206 Solve for θ in Degrees 3tan(theta)-2=5tan(theta)-1 3tan(θ)-2=5tan(θ)-13tan(θ)2=5tan(θ)1
52207 Find the Reference Angle sin(-pi/3) sin(-π3)sin(π3)
52208 Solve for x in Radians -sin(x)=0 -sin(x)=0sin(x)=0
52209 Find the Value Using the Unit Circle -( square root of 3)/2 -3232
52210 Find Amplitude, Period, and Phase Shift y=-4sin(x+3pi) ? y=-4sin(x+3π)y=4sin(x+3π) ?
52211 Convert from Radians to Degrees 14rad 1414 radians
52212 Find the Cosine of the Angle 300 degrees 300°300°
52213 Solve for x in Radians cos(2x)+cos(x)=0 cos(2x)+cos(x)=0cos(2x)+cos(x)=0
52214 Find Amplitude, Period, and Phase Shift y=cos((6pix)/7+pi/2) y=cos(6πx7+π2)y=cos(6πx7+π2)
52215 Verify the Identity sin(3x)=(sin(x))(4cos(x)^2-1) sin(3x)=(sin(x))(4cos2(x)-1)sin(3x)=(sin(x))(4cos2(x)1)
52216 Expand the Trigonometric Expression csc(90 degrees -theta) csc(90°-θ)csc(90°θ)
52217 Find Amplitude, Period, and Phase Shift y=4+3sin(pi/3x-pi/16) y=4+3sin(π3x-π16)y=4+3sin(π3xπ16)
52218 Find Amplitude, Period, and Phase Shift y=cos(theta-pi)+2 y=cos(θ-π)+2y=cos(θπ)+2
52219 Convert to Rectangular Coordinates ( square root of 3,pi/2) (3,π2)(3,π2)
52220 Convert from Degrees to Radians 25deg 2525 degrees
52221 Solve for C in Degrees 6cos(C)-4=cos(C)-9 6cos(C)-4=cos(C)-96cos(C)4=cos(C)9
52222 Find the Other Trig Values in Quadrant IV sec(theta) = square root of 2 sec(θ)=2sec(θ)=2
52223 Solve for x in Radians sin(1/4x)=0 sin(14x)=0sin(14x)=0
52224 Find the Reference Angle tan((5pi)/3) tan(5π3)tan(5π3)
52225 Verify the Identity sin(x)tan(x)+cos(x)-sec(x)+1=sec(x)^2cos(x)^2 sin(x)tan(x)+cos(x)-sec(x)+1=sec2(x)cos2(x)sin(x)tan(x)+cos(x)sec(x)+1=sec2(x)cos2(x)
52226 Find the Reference Angle tan((3pi)/2) tan(3π2)tan(3π2)
52227 Expand Using Sum/Difference Formulas tan(pi+theta) tan(π+θ)tan(π+θ)
52228 Find Amplitude, Period, and Phase Shift y=1/4sin((4pix)/7+(2pi)/5) y=14sin(4πx7+2π5)y=14sin(4πx7+2π5)
52229 Convert to Trigonometric Form 1-2cos(x)^2+cos(x)^4 1-2cos2(x)+cos4(x)12cos2(x)+cos4(x)
52230 Convert to Trigonometric Form cot(theta)+tan(theta) cot(θ)+tan(θ)cot(θ)+tan(θ)
52231 Solve for θ in Degrees 4sin(theta)^2=3 4sin2(θ)=34sin2(θ)=3
52232 Find Trig Functions Using Identities csc(theta)=4 , cot(theta)<0 csc(θ)=4csc(θ)=4 , cot(θ)<0cot(θ)<0
52233 Find Trig Functions Using Identities tan(theta)=24/7 , sin(theta)<0 tan(θ)=247tan(θ)=247 , sin(θ)<0sin(θ)<0
52234 Convert from Radians to Degrees 20rad 2020 rad
52235 Find the Other Trig Values in Quadrant III tan(theta)=0 tan(θ)=0tan(θ)=0
52236 Convert from Degrees to Radians -210deg -210210 degrees
52237 Solve for θ in Degrees sec(theta)^2-9sec(theta)+20=0 sec2(θ)-9sec(θ)+20=0sec2(θ)9sec(θ)+20=0
52238 Find Trig Functions Using Identities sec(t)=2 , sin(t)<0 sec(t)=2sec(t)=2 , sin(t)<0sin(t)<0
52239 Solve for x in Degrees 8sin(x)cos(x)+cos(x)=0 8sin(x)cos(x)+cos(x)=08sin(x)cos(x)+cos(x)=0
52240 Find the Length of b tri{}{}{10}{}{6}{} SideAngleb=c=10a=6A=B=C=SideAngleb=c=10a=6A=B=C=
52241 Find the Other Trig Values in Quadrant I tan(30 degrees )=5/3 tan(30°)=53tan(30°)=53
52242 Find Amplitude, Period, and Phase Shift y=2cot(1/3x+pi/6)+2 y=2cot(13x+π6)+2y=2cot(13x+π6)+2
52243 Find the Reference Angle tan((9pi)/4) tan(9π4)tan(9π4)
52244 Find the Reference Angle sin((11pi)/3) sin(11π3)sin(11π3)
52245 Find Amplitude, Period, and Phase Shift y=sin(6pix-(4pi)/3) y=sin(6πx-4π3)y=sin(6πx4π3)
52246 Find the Reference Angle cot((13pi)/3) cot(13π3)cot(13π3)
52247 Solve for θ in Degrees 4csc(theta)^2-25=0 4csc2(θ)-25=04csc2(θ)25=0
52248 Verify the Identity csc(theta)^2=1+cot(theta)^2 csc2(θ)=1+cot2(θ)csc2(θ)=1+cot2(θ)
52249 Find the Cotangent Given the Point (( square root of 2)/3,-( square root of 7)/3) (23,-73)(23,73)
52250 Find the Other Trig Values in Quadrant III sec(theta)=- square root of 5 sec(θ)=-5sec(θ)=5
52251 Verify the Identity cos(x)^3sin(x)^2=(sin(x)^2-sin(x)^4)cos(x) cos3(x)sin2(x)=(sin2(x)-sin4(x))cos(x)cos3(x)sin2(x)=(sin2(x)sin4(x))cos(x)
52252 Find Amplitude, Period, and Phase Shift y=3sin(2x+3pi)-1 y=3sin(2x+3π)-1y=3sin(2x+3π)1
52253 Find Amplitude, Period, and Phase Shift f(x)=1/7cot(8theta-120) f(x)=17cot(8θ-120)f(x)=17cot(8θ120)
52254 Verify the Identity (cos(x)sin(x))/(cot(x))=1-cos(x)^2 cos(x)sin(x)cot(x)=1-cos2(x)cos(x)sin(x)cot(x)=1cos2(x)
52255 Find Amplitude, Period, and Phase Shift y=-sin(x/2+pi/3) y=-sin(x2+π3)y=sin(x2+π3)
52256 Convert from Radians to Degrees pi/4*180/pi π4180ππ4180π
52257 Expand Using Sum/Difference Formulas 1/6(18x-24) 16(18x-24)16(18x24)
52258 Convert from Degrees to Radians 320deg 320320 degrees
52259 Find the Reference Angle 300deg 300300 degrees
52260 Convert from Degrees to Radians 495deg 495495 degrees
52261 Solve for θ in Radians tan(theta)=2sin(theta) tan(θ)=2sin(θ)tan(θ)=2sin(θ)
52262 Find Amplitude, Period, and Phase Shift y=sin((4x)/3-(5pi)/3) y=sin(4x3-5π3)y=sin(4x35π3)
52263 Find the Secant Given the Point ( square root of 7,3) (7,3)(7,3)
52264 Find the Cotangent Given the Point (1/( square root of 2),-1/( square root of 2)) (12,-12)(12,12)
52265 Find Amplitude, Period, and Phase Shift y=1/4sin(8pix-(5pi)/4) y=14sin(8πx-5π4)y=14sin(8πx5π4)
52266 Find the Value Using the Unit Circle tan(-(7pi)/4) tan(-7π4)tan(7π4)
52267 Find Amplitude, Period, and Phase Shift y=2cos((8x)/3-2pi) y=2cos(8x3-2π)y=2cos(8x32π)
52268 Find the Length of b tri{}{45}{5}{45}{}{90} SideAngleb=c=5a=A=45B=45C=90SideAngleb=c=5a=A=45B=45C=90
52269 Find Amplitude, Period, and Phase Shift y=cos(x-pi/3)+2 y=cos(x-π3)+2y=cos(xπ3)+2
52270 Expand Using Sum/Difference Formulas csc(pi/2-x) csc(π2-x)csc(π2x)
52271 Find the Tangent of the Angle (5pi)/3 5π35π3
52272 Find Amplitude, Period, and Phase Shift y=4cos(-2x-pi/3) y=4cos(-2x-π3)y=4cos(2xπ3)
52273 Solve for x in Degrees 2sin(x)=1 2sin(x)=12sin(x)=1
52274 Solve for X in Degrees tan(X)=2 tan(X)=2tan(X)=2
52275 Solve for x in Degrees cos(x)sin(x)=-sin(x) cos(x)sin(x)=-sin(x)cos(x)sin(x)=sin(x)
52276 Verify sec(x)-tan(x)sin(x)=1/(sec(x)) sec(x)-tan(x)sin(x)=1sec(x)sec(x)tan(x)sin(x)=1sec(x)
52277 Find the Other Trig Values in Quadrant IV sec(theta) = square root of 3 sec(θ)=3sec(θ)=3
52278 Find the Cotangent Given the Point ((- square root of 2)/2,( square root of 2)/2) (-22,22)(22,22)
52279 Find Amplitude, Period, and Phase Shift y=sin(1/6(x+pi/3)) y=sin(16(x+π3))y=sin(16(x+π3))
52280 Convert from Degrees to Radians 250deg 250250 degrees
52281 Find Amplitude, Period, and Phase Shift y=5sec(4x)+10 y=5sec(4x)+10y=5sec(4x)+10
52282 Find Amplitude, Period, and Phase Shift y=1/2cos((6x)/5-1) y=12cos(6x5-1)y=12cos(6x51)
52283 Find the Reference Angle cot(210 degrees ) cot(210°)cot(210°)
52284 Convert from Radians to Degrees tan(pi/4) tan(π4)tan(π4)
52285 Solve for x in Radians tan(x)=( square root of 3)/2 tan(x)=32tan(x)=32
52286 Find the Cosecant Given the Point (-( square root of 5)/3,-2/3) (-53,-23)(53,23)
52287 Find Amplitude, Period, and Phase Shift y=-2cos(x-pi)-2 y=-2cos(x-π)-2y=2cos(xπ)2
52288 Find Amplitude, Period, and Phase Shift y=1/6sin(x/4) y=16sin(x4)y=16sin(x4)
52289 Find Amplitude, Period, and Phase Shift y=2cos(1/2x)+1 y=2cos(12x)+1y=2cos(12x)+1
52290 Solve for θ in Degrees 14cos(theta)-5=5cos(theta)-5 14cos(θ)-5=5cos(θ)-514cos(θ)5=5cos(θ)5
52291 Verify the Identity (sin(x)^2)/(cos(x))+cos(x)-1/(cos(x))+1=sec(x)^2cos(x)^2 sin2(x)cos(x)+cos(x)-1cos(x)+1=sec2(x)cos2(x)sin2(x)cos(x)+cos(x)1cos(x)+1=sec2(x)cos2(x)
52292 Find the Reference Angle sin((19pi)/6) sin(19π6)sin(19π6)
52293 Solve for x in Radians sin(x)^2=3cos(x)^2 sin2(x)=3cos2(x)sin2(x)=3cos2(x)
52294 Expand Using Sum/Difference Formulas sin(pi/4+x) sin(π4+x)sin(π4+x)
52295 Convert from Radians to Degrees 1/( square root of 3) 1313
52296 Solve for x in Degrees 8cos(x)sin(x)+9sin(x)=0 8cos(x)sin(x)+9sin(x)=08cos(x)sin(x)+9sin(x)=0
52297 Solve for x in Radians 2sin(x)^2-3sin(x)=-1 2sin2(x)-3sin(x)=-12sin2(x)3sin(x)=1
52298 Solve for θ in Degrees tan(theta)=-5 tan(θ)=-5tan(θ)=5
52299 Verify the Identity cot(theta)+1=csc(theta)(cos(theta)+sin(theta)) cot(θ)+1=csc(θ)(cos(θ)+sin(θ))cot(θ)+1=csc(θ)(cos(θ)+sin(θ))
52300 Solve for θ in Degrees sec(theta)^2-6sec(theta)+8=0 sec2(θ)-6sec(θ)+8=0sec2(θ)6sec(θ)+8=0
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay