52201 |
Convert to Degrees, Minutes, and Seconds |
2.32rad |
2.322.32 rad |
52202 |
Verify the Identity |
x^2-1=(x-1)(x+1) |
x2-1=(x-1)(x+1)x2−1=(x−1)(x+1) |
52203 |
Find the Reference Angle |
sin((3pi)/2) |
sin(3π2)sin(3π2) |
52204 |
Find Trig Functions Using Identities |
tan(theta)=-3/5 , cos(theta)>0 |
tan(θ)=-35tan(θ)=−35 , cos(θ)>0cos(θ)>0 |
52205 |
Find the Cosecant Given the Point |
( square root of 7,3) |
(√7,3)(√7,3) |
52206 |
Solve for θ in Degrees |
3tan(theta)-2=5tan(theta)-1 |
3tan(θ)-2=5tan(θ)-13tan(θ)−2=5tan(θ)−1 |
52207 |
Find the Reference Angle |
sin(-pi/3) |
sin(-π3)sin(−π3) |
52208 |
Solve for x in Radians |
-sin(x)=0 |
-sin(x)=0−sin(x)=0 |
52209 |
Find the Value Using the Unit Circle |
-( square root of 3)/2 |
-√32−√32 |
52210 |
Find Amplitude, Period, and Phase Shift |
y=-4sin(x+3pi) ? |
y=-4sin(x+3π)y=−4sin(x+3π) ? |
52211 |
Convert from Radians to Degrees |
14rad |
1414 radians |
52212 |
Find the Cosine of the Angle |
300 degrees |
300°300° |
52213 |
Solve for x in Radians |
cos(2x)+cos(x)=0 |
cos(2x)+cos(x)=0cos(2x)+cos(x)=0 |
52214 |
Find Amplitude, Period, and Phase Shift |
y=cos((6pix)/7+pi/2) |
y=cos(6πx7+π2)y=cos(6πx7+π2) |
52215 |
Verify the Identity |
sin(3x)=(sin(x))(4cos(x)^2-1) |
sin(3x)=(sin(x))(4cos2(x)-1)sin(3x)=(sin(x))(4cos2(x)−1) |
52216 |
Expand the Trigonometric Expression |
csc(90 degrees -theta) |
csc(90°-θ)csc(90°−θ) |
52217 |
Find Amplitude, Period, and Phase Shift |
y=4+3sin(pi/3x-pi/16) |
y=4+3sin(π3x-π16)y=4+3sin(π3x−π16) |
52218 |
Find Amplitude, Period, and Phase Shift |
y=cos(theta-pi)+2 |
y=cos(θ-π)+2y=cos(θ−π)+2 |
52219 |
Convert to Rectangular Coordinates |
( square root of 3,pi/2) |
(√3,π2)(√3,π2) |
52220 |
Convert from Degrees to Radians |
25deg |
2525 degrees |
52221 |
Solve for C in Degrees |
6cos(C)-4=cos(C)-9 |
6cos(C)-4=cos(C)-96cos(C)−4=cos(C)−9 |
52222 |
Find the Other Trig Values in Quadrant IV |
sec(theta) = square root of 2 |
sec(θ)=√2sec(θ)=√2 |
52223 |
Solve for x in Radians |
sin(1/4x)=0 |
sin(14x)=0sin(14x)=0 |
52224 |
Find the Reference Angle |
tan((5pi)/3) |
tan(5π3)tan(5π3) |
52225 |
Verify the Identity |
sin(x)tan(x)+cos(x)-sec(x)+1=sec(x)^2cos(x)^2 |
sin(x)tan(x)+cos(x)-sec(x)+1=sec2(x)cos2(x)sin(x)tan(x)+cos(x)−sec(x)+1=sec2(x)cos2(x) |
52226 |
Find the Reference Angle |
tan((3pi)/2) |
tan(3π2)tan(3π2) |
52227 |
Expand Using Sum/Difference Formulas |
tan(pi+theta) |
tan(π+θ)tan(π+θ) |
52228 |
Find Amplitude, Period, and Phase Shift |
y=1/4sin((4pix)/7+(2pi)/5) |
y=14sin(4πx7+2π5)y=14sin(4πx7+2π5) |
52229 |
Convert to Trigonometric Form |
1-2cos(x)^2+cos(x)^4 |
1-2cos2(x)+cos4(x)1−2cos2(x)+cos4(x) |
52230 |
Convert to Trigonometric Form |
cot(theta)+tan(theta) |
cot(θ)+tan(θ)cot(θ)+tan(θ) |
52231 |
Solve for θ in Degrees |
4sin(theta)^2=3 |
4sin2(θ)=34sin2(θ)=3 |
52232 |
Find Trig Functions Using Identities |
csc(theta)=4 , cot(theta)<0 |
csc(θ)=4csc(θ)=4 , cot(θ)<0cot(θ)<0 |
52233 |
Find Trig Functions Using Identities |
tan(theta)=24/7 , sin(theta)<0 |
tan(θ)=247tan(θ)=247 , sin(θ)<0sin(θ)<0 |
52234 |
Convert from Radians to Degrees |
20rad |
2020 rad |
52235 |
Find the Other Trig Values in Quadrant III |
tan(theta)=0 |
tan(θ)=0tan(θ)=0 |
52236 |
Convert from Degrees to Radians |
-210deg |
-210−210 degrees |
52237 |
Solve for θ in Degrees |
sec(theta)^2-9sec(theta)+20=0 |
sec2(θ)-9sec(θ)+20=0sec2(θ)−9sec(θ)+20=0 |
52238 |
Find Trig Functions Using Identities |
sec(t)=2 , sin(t)<0 |
sec(t)=2sec(t)=2 , sin(t)<0sin(t)<0 |
52239 |
Solve for x in Degrees |
8sin(x)cos(x)+cos(x)=0 |
8sin(x)cos(x)+cos(x)=08sin(x)cos(x)+cos(x)=0 |
52240 |
Find the Length of b |
tri{}{}{10}{}{6}{} |
SideAngleb=c=10a=6A=B=C=SideAngleb=c=10a=6A=B=C= |
52241 |
Find the Other Trig Values in Quadrant I |
tan(30 degrees )=5/3 |
tan(30°)=53tan(30°)=53 |
52242 |
Find Amplitude, Period, and Phase Shift |
y=2cot(1/3x+pi/6)+2 |
y=2cot(13x+π6)+2y=2cot(13x+π6)+2 |
52243 |
Find the Reference Angle |
tan((9pi)/4) |
tan(9π4)tan(9π4) |
52244 |
Find the Reference Angle |
sin((11pi)/3) |
sin(11π3)sin(11π3) |
52245 |
Find Amplitude, Period, and Phase Shift |
y=sin(6pix-(4pi)/3) |
y=sin(6πx-4π3)y=sin(6πx−4π3) |
52246 |
Find the Reference Angle |
cot((13pi)/3) |
cot(13π3)cot(13π3) |
52247 |
Solve for θ in Degrees |
4csc(theta)^2-25=0 |
4csc2(θ)-25=04csc2(θ)−25=0 |
52248 |
Verify the Identity |
csc(theta)^2=1+cot(theta)^2 |
csc2(θ)=1+cot2(θ)csc2(θ)=1+cot2(θ) |
52249 |
Find the Cotangent Given the Point |
(( square root of 2)/3,-( square root of 7)/3) |
(√23,-√73)(√23,−√73) |
52250 |
Find the Other Trig Values in Quadrant III |
sec(theta)=- square root of 5 |
sec(θ)=-√5sec(θ)=−√5 |
52251 |
Verify the Identity |
cos(x)^3sin(x)^2=(sin(x)^2-sin(x)^4)cos(x) |
cos3(x)sin2(x)=(sin2(x)-sin4(x))cos(x)cos3(x)sin2(x)=(sin2(x)−sin4(x))cos(x) |
52252 |
Find Amplitude, Period, and Phase Shift |
y=3sin(2x+3pi)-1 |
y=3sin(2x+3π)-1y=3sin(2x+3π)−1 |
52253 |
Find Amplitude, Period, and Phase Shift |
f(x)=1/7cot(8theta-120) |
f(x)=17cot(8θ-120)f(x)=17cot(8θ−120) |
52254 |
Verify the Identity |
(cos(x)sin(x))/(cot(x))=1-cos(x)^2 |
cos(x)sin(x)cot(x)=1-cos2(x)cos(x)sin(x)cot(x)=1−cos2(x) |
52255 |
Find Amplitude, Period, and Phase Shift |
y=-sin(x/2+pi/3) |
y=-sin(x2+π3)y=−sin(x2+π3) |
52256 |
Convert from Radians to Degrees |
pi/4*180/pi |
π4⋅180ππ4⋅180π |
52257 |
Expand Using Sum/Difference Formulas |
1/6(18x-24) |
16(18x-24)16(18x−24) |
52258 |
Convert from Degrees to Radians |
320deg |
320320 degrees |
52259 |
Find the Reference Angle |
300deg |
300300 degrees |
52260 |
Convert from Degrees to Radians |
495deg |
495495 degrees |
52261 |
Solve for θ in Radians |
tan(theta)=2sin(theta) |
tan(θ)=2sin(θ)tan(θ)=2sin(θ) |
52262 |
Find Amplitude, Period, and Phase Shift |
y=sin((4x)/3-(5pi)/3) |
y=sin(4x3-5π3)y=sin(4x3−5π3) |
52263 |
Find the Secant Given the Point |
( square root of 7,3) |
(√7,3)(√7,3) |
52264 |
Find the Cotangent Given the Point |
(1/( square root of 2),-1/( square root of 2)) |
(1√2,-1√2)(1√2,−1√2) |
52265 |
Find Amplitude, Period, and Phase Shift |
y=1/4sin(8pix-(5pi)/4) |
y=14sin(8πx-5π4)y=14sin(8πx−5π4) |
52266 |
Find the Value Using the Unit Circle |
tan(-(7pi)/4) |
tan(-7π4)tan(−7π4) |
52267 |
Find Amplitude, Period, and Phase Shift |
y=2cos((8x)/3-2pi) |
y=2cos(8x3-2π)y=2cos(8x3−2π) |
52268 |
Find the Length of b |
tri{}{45}{5}{45}{}{90} |
SideAngleb=c=5a=A=45B=45C=90SideAngleb=c=5a=A=45B=45C=90 |
52269 |
Find Amplitude, Period, and Phase Shift |
y=cos(x-pi/3)+2 |
y=cos(x-π3)+2y=cos(x−π3)+2 |
52270 |
Expand Using Sum/Difference Formulas |
csc(pi/2-x) |
csc(π2-x)csc(π2−x) |
52271 |
Find the Tangent of the Angle |
(5pi)/3 |
5π35π3 |
52272 |
Find Amplitude, Period, and Phase Shift |
y=4cos(-2x-pi/3) |
y=4cos(-2x-π3)y=4cos(−2x−π3) |
52273 |
Solve for x in Degrees |
2sin(x)=1 |
2sin(x)=12sin(x)=1 |
52274 |
Solve for X in Degrees |
tan(X)=2 |
tan(X)=2tan(X)=2 |
52275 |
Solve for x in Degrees |
cos(x)sin(x)=-sin(x) |
cos(x)sin(x)=-sin(x)cos(x)sin(x)=−sin(x) |
52276 |
Verify |
sec(x)-tan(x)sin(x)=1/(sec(x)) |
sec(x)-tan(x)sin(x)=1sec(x)sec(x)−tan(x)sin(x)=1sec(x) |
52277 |
Find the Other Trig Values in Quadrant IV |
sec(theta) = square root of 3 |
sec(θ)=√3sec(θ)=√3 |
52278 |
Find the Cotangent Given the Point |
((- square root of 2)/2,( square root of 2)/2) |
(-√22,√22)(−√22,√22) |
52279 |
Find Amplitude, Period, and Phase Shift |
y=sin(1/6(x+pi/3)) |
y=sin(16(x+π3))y=sin(16(x+π3)) |
52280 |
Convert from Degrees to Radians |
250deg |
250250 degrees |
52281 |
Find Amplitude, Period, and Phase Shift |
y=5sec(4x)+10 |
y=5sec(4x)+10y=5sec(4x)+10 |
52282 |
Find Amplitude, Period, and Phase Shift |
y=1/2cos((6x)/5-1) |
y=12cos(6x5-1)y=12cos(6x5−1) |
52283 |
Find the Reference Angle |
cot(210 degrees ) |
cot(210°)cot(210°) |
52284 |
Convert from Radians to Degrees |
tan(pi/4) |
tan(π4)tan(π4) |
52285 |
Solve for x in Radians |
tan(x)=( square root of 3)/2 |
tan(x)=√32tan(x)=√32 |
52286 |
Find the Cosecant Given the Point |
(-( square root of 5)/3,-2/3) |
(-√53,-23)(−√53,−23) |
52287 |
Find Amplitude, Period, and Phase Shift |
y=-2cos(x-pi)-2 |
y=-2cos(x-π)-2y=−2cos(x−π)−2 |
52288 |
Find Amplitude, Period, and Phase Shift |
y=1/6sin(x/4) |
y=16sin(x4)y=16sin(x4) |
52289 |
Find Amplitude, Period, and Phase Shift |
y=2cos(1/2x)+1 |
y=2cos(12x)+1y=2cos(12x)+1 |
52290 |
Solve for θ in Degrees |
14cos(theta)-5=5cos(theta)-5 |
14cos(θ)-5=5cos(θ)-514cos(θ)−5=5cos(θ)−5 |
52291 |
Verify the Identity |
(sin(x)^2)/(cos(x))+cos(x)-1/(cos(x))+1=sec(x)^2cos(x)^2 |
sin2(x)cos(x)+cos(x)-1cos(x)+1=sec2(x)cos2(x)sin2(x)cos(x)+cos(x)−1cos(x)+1=sec2(x)cos2(x) |
52292 |
Find the Reference Angle |
sin((19pi)/6) |
sin(19π6)sin(19π6) |
52293 |
Solve for x in Radians |
sin(x)^2=3cos(x)^2 |
sin2(x)=3cos2(x)sin2(x)=3cos2(x) |
52294 |
Expand Using Sum/Difference Formulas |
sin(pi/4+x) |
sin(π4+x)sin(π4+x) |
52295 |
Convert from Radians to Degrees |
1/( square root of 3) |
1√31√3 |
52296 |
Solve for x in Degrees |
8cos(x)sin(x)+9sin(x)=0 |
8cos(x)sin(x)+9sin(x)=08cos(x)sin(x)+9sin(x)=0 |
52297 |
Solve for x in Radians |
2sin(x)^2-3sin(x)=-1 |
2sin2(x)-3sin(x)=-12sin2(x)−3sin(x)=−1 |
52298 |
Solve for θ in Degrees |
tan(theta)=-5 |
tan(θ)=-5tan(θ)=−5 |
52299 |
Verify the Identity |
cot(theta)+1=csc(theta)(cos(theta)+sin(theta)) |
cot(θ)+1=csc(θ)(cos(θ)+sin(θ))cot(θ)+1=csc(θ)(cos(θ)+sin(θ)) |
52300 |
Solve for θ in Degrees |
sec(theta)^2-6sec(theta)+8=0 |
sec2(θ)-6sec(θ)+8=0sec2(θ)−6sec(θ)+8=0 |