Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=-sin(x/2+pi/3)
y=-sin(x2+π3)
Step 1
Use the form asin(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-1
b=12
c=-π3
d=0
Step 2
Find the amplitude |a|.
Amplitude: 1
Step 3
Find the period of -sin(x2+π3).
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 12 in the formula for period.
2π|12|
Step 3.3
12 is approximately 0.5 which is positive so remove the absolute value
2π12
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
2π2
Step 3.5
Multiply 2 by 2.
4π
4π
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: -π312
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: -π32
Step 4.4
Multiply -π32.
Tap for more steps...
Step 4.4.1
Multiply 2 by -1.
Phase Shift: -2π3
Step 4.4.2
Combine -2 and π3.
Phase Shift: -2π3
Phase Shift: -2π3
Step 4.5
Move the negative in front of the fraction.
Phase Shift: -2π3
Phase Shift: -2π3
Step 5
List the properties of the trigonometric function.
Amplitude: 1
Period: 4π
Phase Shift: -2π3 (2π3 to the left)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]