Trigonometry Examples

Convert to Trigonometric Form 1-2cos(x)^2+cos(x)^4
1-2cos2(x)+cos4(x)
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=1 and b=-2cos2(x).
|z|=(-2cos2(x))2+12
Step 4
Find |z|.
Tap for more steps...
Step 4.1
Apply the product rule to -2cos2(x).
|z|=(-2)2(cos2(x))2+12
Step 4.2
Raise -2 to the power of 2.
|z|=4(cos2(x))2+12
Step 4.3
Multiply the exponents in (cos2(x))2.
Tap for more steps...
Step 4.3.1
Apply the power rule and multiply exponents, (am)n=amn.
|z|=4cos(x)22+12
Step 4.3.2
Multiply 2 by 2.
|z|=4cos4(x)+12
|z|=4cos4(x)+12
Step 4.4
One to any power is one.
|z|=4cos4(x)+1
|z|=4cos4(x)+1
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(-2cos2(x)1)
Step 6
Substitute the values of θ=arctan(-2cos2(x)1) and |z|=4cos4(x)+1.
4cos4(x)+1(cos(arctan(-2cos2(x)1))+isin(arctan(-2cos2(x)1)))
 [x2  12  π  xdx ]