Enter a problem...
Trigonometry Examples
y=14sin(8πx-5π4)y=14sin(8πx−5π4)
Step 1
Use the form asin(bx-c)+dasin(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=14a=14
b=8πb=8π
c=5π4c=5π4
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 1414
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 8π8π in the formula for period.
2π|8π|2π|8π|
Step 3.3
8π8π is approximately 25.1327412225.13274122 which is positive so remove the absolute value
2π8π2π8π
Step 3.4
Cancel the common factor of 22 and 88.
Step 3.4.1
Factor 22 out of 2π2π.
2(π)8π2(π)8π
Step 3.4.2
Cancel the common factors.
Step 3.4.2.1
Factor 22 out of 8π8π.
2(π)2(4π)2(π)2(4π)
Step 3.4.2.2
Cancel the common factor.
2π2(4π)
Step 3.4.2.3
Rewrite the expression.
π4π
π4π
π4π
Step 3.5
Cancel the common factor of π.
Step 3.5.1
Cancel the common factor.
π4π
Step 3.5.2
Rewrite the expression.
14
14
14
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 5π48π
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 5π4⋅18π
Step 4.4
Cancel the common factor of π.
Step 4.4.1
Factor π out of 5π.
Phase Shift: π⋅54⋅18π
Step 4.4.2
Factor π out of 8π.
Phase Shift: π⋅54⋅1π⋅8
Step 4.4.3
Cancel the common factor.
Phase Shift: π⋅54⋅1π⋅8
Step 4.4.4
Rewrite the expression.
Phase Shift: 54⋅18
Phase Shift: 54⋅18
Step 4.5
Multiply 54 by 18.
Phase Shift: 54⋅8
Step 4.6
Multiply 4 by 8.
Phase Shift: 532
Phase Shift: 532
Step 5
List the properties of the trigonometric function.
Amplitude: 14
Period: 14
Phase Shift: 532 (532 to the right)
Vertical Shift: None
Step 6