39451 |
Find the Cotangent Given the Point |
(( square root of 2)/3,( square root of 7)/3) |
(√23,√73) |
39452 |
Find Amplitude, Period, and Phase Shift |
y=cos(4pix-5/3) |
y=cos(4πx−53) |
39453 |
Solve for C in Degrees |
10cos(C)+1=cos(C)-1 |
10cos(C)+1=cos(C)−1 |
39454 |
Find the Cosecant Given the Point |
( square root of 5,2) |
(√5,2) |
39455 |
Solve for x in Degrees |
sin(x)^2+sin(x)=0 |
sin2(x)+sin(x)=0 |
39456 |
Verify the Identity |
cot(theta)+tan(theta)=(csc(theta))/(cos(theta)) |
cot(θ)+tan(θ)=csc(θ)cos(θ) |
39457 |
Convert to Polar |
(0,-(7pi)/6) |
(0,−7π6) |
39458 |
Convert to Rectangular Coordinates |
(0,-(7pi)/6) |
(0,−7π6) |
39459 |
Determine if the Sides Form a Right Triangle |
8 , 10 , 12 |
8 , 10 , 12 |
39460 |
Verify the Identity |
1-sin(x)^2-sin(x)^2=1-2sin(x)^2 |
1−sin2(x)−sin2(x)=1−2sin2(x) |
39461 |
Solve for A in Degrees |
6sin(A)+4=2sin(A)+8 |
6sin(A)+4=2sin(A)+8 |
39462 |
Solve for x in Radians |
tan(3x)^2=3 |
tan2(3x)=3 |
39463 |
Find the Sine of the Angle |
-(3pi)/2 |
−3π2 |
39464 |
Find the Reference Angle |
sin((17pi)/6) |
sin(17π6) |
39465 |
Solve for θ in Degrees |
11sin(theta)+2=4sin(theta)+2 |
11sin(θ)+2=4sin(θ)+2 |
39466 |
Find Amplitude, Period, and Phase Shift |
y=-2cot(pi/4x) |
y=−2cot(π4x) |
39467 |
Find the Cosecant Given the Point |
(2 square root of 5,4) |
(2√5,4) |
39468 |
Solve for x in Radians |
cos(x)^2+sin(x)=1 |
cos2(x)+sin(x)=1 |
39469 |
Solve for θ in Degrees |
3sin(theta)^2-4=-4sin(theta) |
3sin2(θ)−4=−4sin(θ) |
39470 |
Find the Cotangent Given the Point |
(2 square root of 5,4) |
(2√5,4) |
39471 |
Solve for θ in Degrees |
4csc(theta)+6=-2 |
4csc(θ)+6=−2 |
39472 |
Find Amplitude, Period, and Phase Shift |
y=4/3cot(4(x-pi/2))+1 |
y=43cot(4(x−π2))+1 |
39473 |
Find the Coterminal Angle |
16pi |
16π |
39474 |
Find the Length of b |
tri{}{30}{}{60}{2}{90} |
SideAngleb=c=a=2A=30B=60C=90 |
39475 |
Find the Length of c |
tri{6}{30}{}{60}{}{90} |
SideAngleb=6c=a=A=30B=60C=90 |
39476 |
Find Amplitude, Period, and Phase Shift |
y=4sin((3x)/2+4/3) |
y=4sin(3x2+43) |
39477 |
Find the Cosine of the Angle |
-(3pi)/4 |
−3π4 |
39478 |
Verify the Identity |
(sec(B)+tan(B))(1-sin(B))=cos(B) |
(sec(B)+tan(B))(1−sin(B))=cos(B) |
39479 |
Solve for x in Degrees |
8cos(x)tan(x)=-tan(x) |
8cos(x)tan(x)=−tan(x) |
39480 |
Verify the Identity |
tan(A)=tan(A)*csc(A)^2+cot(-A) |
tan(A)=tan(A)⋅csc2(A)+cot(−A) |
39481 |
Solve for x in Degrees |
2sin(x)tan(x)=9tan(x) |
2sin(x)tan(x)=9tan(x) |
39482 |
Solve the Triangle |
tri{15}{}{}{}{9}{106} |
SideAngleb=15c=a=9A=B=C=106 |
39483 |
Convert from Radians to Degrees |
3.5rad |
3.5 rad |
39484 |
Solve for θ in Degrees |
9cos(theta)^2-24sin(theta)-10=-8sin(theta)+6 |
9cos2(θ)−24sin(θ)−10=−8sin(θ)+6 |
39485 |
Find the Trig Value |
tan(theta)=24/7 , 0<=theta<=pi/2 |
tan(θ)=247 , 0≤θ≤π2 |
39486 |
Expand Using Sum/Difference Formulas |
csc(pi/2-theta) |
csc(π2−θ) |
39487 |
Find the Trig Value |
cos(theta)=-3/5 , pi/2<theta<pi |
cos(θ)=−35 , π2<θ<π |
39488 |
Expand Using Sum/Difference Formulas |
-1/2(y-x) |
−12(y−x) |
39489 |
Convert from Radians to Degrees |
pi/8 radianes |
π8 radianes |
39490 |
Expand Using Sum/Difference Formulas |
tan(90 degrees -theta) |
tan(90°−θ) |
39491 |
Solve for θ in Degrees |
tan(theta)=(- square root of 3)/3 |
tan(θ)=−√33 |
39492 |
Find the Length of a |
tri{6}{}{10}{}{}{} |
SideAngleb=6c=10a=A=B=C= |
39493 |
Solve for x in Degrees |
sin(x)=cos(x) |
sin(x)=cos(x) |
39494 |
Convert from Degrees to Radians |
arcsin(-0.5) |
arcsin(−0.5) |
39495 |
Find the Coterminal Angle |
-895 |
−895 |
39496 |
Expand Using Sum/Difference Formulas |
cot((25pi)/2+t) |
cot(25π2+t) |
39497 |
Solve for x in Degrees |
2sin(x)tan(x)+tan(x)=0 |
2sin(x)tan(x)+tan(x)=0 |
39498 |
Verify the Identity |
cos(theta)*csc(theta)*tan(theta)=1 |
cos(θ)⋅csc(θ)⋅tan(θ)=1 |
39499 |
Solve for x in Degrees |
2(1-cos(x)^2)=3/2 |
2(1−cos2(x))=32 |
39500 |
Find Amplitude, Period, and Phase Shift |
y=2sin((3x)/2-1) |
y=2sin(3x2−1) |
39501 |
Find the Reference Angle |
cos((7pi)/3) |
cos(7π3) |
39502 |
Verify the Identity |
sin(pi/6+x)=1/2(cos(x)+ square root of 3sin(x)) |
sin(π6+x)=12(cos(x)+√3sin(x)) |
39503 |
Find the Reference Angle |
tan(315 degrees ) |
tan(315°) |
39504 |
Convert from Degrees to Radians |
35deg |
35 degrees |
39505 |
Find the Reference Angle |
csc(-pi/6) |
csc(−π6) |
39506 |
Verify the Identity |
(cos(x)^2)/(1+sin(x))=1-1/(csc(x)) |
cos2(x)1+sin(x)=1−1csc(x) |
39507 |
Solve for B in Degrees |
5tan(B)+ square root of 13=0 |
5tan(B)+√13=0 |
39508 |
Convert from Radians to Degrees |
4.5rad |
4.5 radians |
39509 |
Find the Value Using the Unit Circle |
sec(-90 degrees ) |
sec(−90°) |
39510 |
Expand Using Sum/Difference Formulas |
tan(15pi-2t) |
tan(15π−2t) |
39511 |
Find Amplitude, Period, and Phase Shift |
y=3+2sin(2x-pi) |
y=3+2sin(2x−π) |
39512 |
Find Trig Functions Using Identities |
tan(theta)=2 , sin(theta)<0 |
tan(θ)=2 , sin(θ)<0 |
39513 |
Find the Reference Angle |
tan((7pi)/3) |
tan(7π3) |
39514 |
Solve for x in Degrees |
2sin(x)^2-cos(x)^2=2 |
2sin2(x)−cos2(x)=2 |
39515 |
Expand the Trigonometric Expression |
sin(a+b)+sin(a-b) |
sin(a+b)+sin(a−b) |
39516 |
Expand Using Sum/Difference Formulas |
2(x-1) |
2(x−1) |
39517 |
Convert from Degrees to Radians |
165*pi/180 |
165⋅π180 |
39518 |
Find the Trig Values Using Angle A |
tri{4}{}{5}{}{3}{} |
SideAngleb=4c=5a=3A=B=C= |
39519 |
Solve for x in Radians |
tan(x)^5-9tan(x)=0 |
tan5(x)−9tan(x)=0 |
39520 |
Find the Sine of the Angle |
(4pi)/3 |
4π3 |
39521 |
Find Amplitude, Period, and Phase Shift |
y=-3/2cos((3x)/4) |
y=−32cos(3x4) |
39522 |
Convert from Radians to Degrees |
-4pirad |
−4π radians |
39523 |
Find the Length of a |
tri{5}{}{13}{}{}{} |
SideAngleb=5c=13a=A=B=C= |
39524 |
Convert to Rectangular Coordinates |
(1.5,-(7pi)/6) |
(1.5,−7π6) |
39525 |
Solve for x in Radians |
sin(3x)=-( square root of 3)/2 |
sin(3x)=−√32 |