Enter a problem...
Trigonometry Examples
2sin(x)tan(x)+tan(x)=02sin(x)tan(x)+tan(x)=0
Step 1
Step 1.1
Simplify each term.
Step 1.1.1
Rewrite tan(x)tan(x) in terms of sines and cosines.
2sin(x)(sin(x)cos(x))+tan(x)=02sin(x)(sin(x)cos(x))+tan(x)=0
Step 1.1.2
Multiply 2sin(x)sin(x)cos(x)2sin(x)sin(x)cos(x).
Step 1.1.2.1
Combine sin(x)cos(x)sin(x)cos(x) and 22.
sin(x)⋅2cos(x)⋅sin(x)+tan(x)=0sin(x)⋅2cos(x)⋅sin(x)+tan(x)=0
Step 1.1.2.2
Combine sin(x)⋅2cos(x)sin(x)⋅2cos(x) and sin(x)sin(x).
sin(x)⋅(2sin(x))cos(x)+tan(x)=0sin(x)⋅(2sin(x))cos(x)+tan(x)=0
Step 1.1.2.3
Raise sin(x)sin(x) to the power of 11.
2(sin(x)sin(x))cos(x)+tan(x)=02(sin(x)sin(x))cos(x)+tan(x)=0
Step 1.1.2.4
Raise sin(x)sin(x) to the power of 11.
2(sin(x)sin(x))cos(x)+tan(x)=02(sin(x)sin(x))cos(x)+tan(x)=0
Step 1.1.2.5
Use the power rule aman=am+naman=am+n to combine exponents.
2sin(x)1+1cos(x)+tan(x)=02sin(x)1+1cos(x)+tan(x)=0
Step 1.1.2.6
Add 11 and 11.
2sin2(x)cos(x)+tan(x)=02sin2(x)cos(x)+tan(x)=0
2sin2(x)cos(x)+tan(x)=02sin2(x)cos(x)+tan(x)=0
Step 1.1.3
Rewrite tan(x)tan(x) in terms of sines and cosines.
2sin2(x)cos(x)+sin(x)cos(x)=02sin2(x)cos(x)+sin(x)cos(x)=0
2sin2(x)cos(x)+sin(x)cos(x)=02sin2(x)cos(x)+sin(x)cos(x)=0
Step 1.2
Simplify each term.
Step 1.2.1
Factor sin(x)sin(x) out of sin2(x)sin2(x).
2(sin(x)sin(x))cos(x)+sin(x)cos(x)=02(sin(x)sin(x))cos(x)+sin(x)cos(x)=0
Step 1.2.2
Separate fractions.
2(sin(x))1⋅sin(x)cos(x)+sin(x)cos(x)=02(sin(x))1⋅sin(x)cos(x)+sin(x)cos(x)=0
Step 1.2.3
Convert from sin(x)cos(x)sin(x)cos(x) to tan(x)tan(x).
2(sin(x))1⋅tan(x)+sin(x)cos(x)=02(sin(x))1⋅tan(x)+sin(x)cos(x)=0
Step 1.2.4
Divide 2(sin(x))2(sin(x)) by 11.
2(sin(x))tan(x)+sin(x)cos(x)=02(sin(x))tan(x)+sin(x)cos(x)=0
Step 1.2.5
Convert from sin(x)cos(x)sin(x)cos(x) to tan(x)tan(x).
2sin(x)tan(x)+tan(x)=02sin(x)tan(x)+tan(x)=0
2sin(x)tan(x)+tan(x)=02sin(x)tan(x)+tan(x)=0
2sin(x)tan(x)+tan(x)=02sin(x)tan(x)+tan(x)=0
Step 2
Step 2.1
Factor tan(x)tan(x) out of 2sin(x)tan(x)2sin(x)tan(x).
tan(x)(2sin(x))+tan(x)=0tan(x)(2sin(x))+tan(x)=0
Step 2.2
Raise tan(x)tan(x) to the power of 11.
tan(x)(2sin(x))+tan(x)=0tan(x)(2sin(x))+tan(x)=0
Step 2.3
Factor tan(x)tan(x) out of tan1(x)tan1(x).
tan(x)(2sin(x))+tan(x)⋅1=0tan(x)(2sin(x))+tan(x)⋅1=0
Step 2.4
Factor tan(x)tan(x) out of tan(x)(2sin(x))+tan(x)⋅1tan(x)(2sin(x))+tan(x)⋅1.
tan(x)(2sin(x)+1)=0tan(x)(2sin(x)+1)=0
tan(x)(2sin(x)+1)=0tan(x)(2sin(x)+1)=0
Step 3
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
tan(x)=0tan(x)=0
2sin(x)+1=02sin(x)+1=0
Step 4
Step 4.1
Set tan(x)tan(x) equal to 00.
tan(x)=0tan(x)=0
Step 4.2
Solve tan(x)=0tan(x)=0 for xx.
Step 4.2.1
Take the inverse tangent of both sides of the equation to extract xx from inside the tangent.
x=arctan(0)x=arctan(0)
Step 4.2.2
Simplify the right side.
Step 4.2.2.1
The exact value of arctan(0)arctan(0) is 00.
x=0x=0
x=0x=0
Step 4.2.3
The tangent function is positive in the first and third quadrants. To find the second solution, subtract the reference angle from 180180 to find the solution in the fourth quadrant.
x=180+0x=180+0
Step 4.2.4
Add 180180 and 00.
x=180x=180
Step 4.2.5
Find the period of tan(x)tan(x).
Step 4.2.5.1
The period of the function can be calculated using 180|b|180|b|.
180|b|180|b|
Step 4.2.5.2
Replace bb with 11 in the formula for period.
180|1|180|1|
Step 4.2.5.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
18011801
Step 4.2.5.4
Divide 180180 by 11.
180180
180180
Step 4.2.6
The period of the tan(x)tan(x) function is 180180 so values will repeat every 180180 degrees in both directions.
x=180n,180+180nx=180n,180+180n, for any integer nn
x=180n,180+180nx=180n,180+180n, for any integer nn
x=180n,180+180nx=180n,180+180n, for any integer nn
Step 5
Step 5.1
Set 2sin(x)+12sin(x)+1 equal to 00.
2sin(x)+1=02sin(x)+1=0
Step 5.2
Solve 2sin(x)+1=02sin(x)+1=0 for xx.
Step 5.2.1
Subtract 11 from both sides of the equation.
2sin(x)=-12sin(x)=−1
Step 5.2.2
Divide each term in 2sin(x)=-12sin(x)=−1 by 22 and simplify.
Step 5.2.2.1
Divide each term in 2sin(x)=-12sin(x)=−1 by 22.
2sin(x)2=-122sin(x)2=−12
Step 5.2.2.2
Simplify the left side.
Step 5.2.2.2.1
Cancel the common factor of 22.
Step 5.2.2.2.1.1
Cancel the common factor.
2sin(x)2=-12
Step 5.2.2.2.1.2
Divide sin(x) by 1.
sin(x)=-12
sin(x)=-12
sin(x)=-12
Step 5.2.2.3
Simplify the right side.
Step 5.2.2.3.1
Move the negative in front of the fraction.
sin(x)=-12
sin(x)=-12
sin(x)=-12
Step 5.2.3
Take the inverse sine of both sides of the equation to extract x from inside the sine.
x=arcsin(-12)
Step 5.2.4
Simplify the right side.
Step 5.2.4.1
The exact value of arcsin(-12) is -30.
x=-30
x=-30
Step 5.2.5
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from 360, to find a reference angle. Next, add this reference angle to 180 to find the solution in the third quadrant.
x=360+30+180
Step 5.2.6
Simplify the expression to find the second solution.
Step 5.2.6.1
Subtract 360° from 360+30+180°.
x=360+30+180°-360°
Step 5.2.6.2
The resulting angle of 210° is positive, less than 360°, and coterminal with 360+30+180.
x=210°
x=210°
Step 5.2.7
Find the period of sin(x).
Step 5.2.7.1
The period of the function can be calculated using 360|b|.
360|b|
Step 5.2.7.2
Replace b with 1 in the formula for period.
360|1|
Step 5.2.7.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
3601
Step 5.2.7.4
Divide 360 by 1.
360
360
Step 5.2.8
Add 360 to every negative angle to get positive angles.
Step 5.2.8.1
Add 360 to -30 to find the positive angle.
-30+360
Step 5.2.8.2
Subtract 30 from 360.
330
Step 5.2.8.3
List the new angles.
x=330
x=330
Step 5.2.9
The period of the sin(x) function is 360 so values will repeat every 360 degrees in both directions.
x=210+360n,330+360n, for any integer n
x=210+360n,330+360n, for any integer n
x=210+360n,330+360n, for any integer n
Step 6
The final solution is all the values that make tan(x)(2sin(x)+1)=0 true.
x=180n,180+180n,210+360n,330+360n, for any integer n
Step 7
Consolidate 180n and 180+180n to 180n.
x=180n,210+360n,330+360n, for any integer n