52501 |
Solve for x in Radians |
sin(2x)+2cos(x)=0 |
sin(2x)+2cos(x)=0sin(2x)+2cos(x)=0 |
52502 |
Solve for x in Radians |
sin(1/3x)=0 |
sin(13x)=0sin(13x)=0 |
52503 |
Find the Reference Angle |
csc(-300 degrees ) |
csc(-300°)csc(−300°) |
52504 |
Verify the Identity |
(x+1)^2=x^2+2x+1 |
(x+1)2=x2+2x+1(x+1)2=x2+2x+1 |
52505 |
Find the Other Trig Values in Quadrant I |
cos(30 degrees )=( square root of 3)/2 |
cos(30°)=√32cos(30°)=√32 |
52506 |
Find the Reference Angle |
cot(-(5pi)/6) |
cot(-5π6)cot(−5π6) |
52507 |
Find Amplitude, Period, and Phase Shift |
y=cos(x/4+pi/4)-2 |
y=cos(x4+π4)-2y=cos(x4+π4)−2 |
52508 |
Verify the Identity |
1/(cos(t))-cos(t)tan(t)^2=cos(t) |
1cos(t)-cos(t)tan2(t)=cos(t)1cos(t)−cos(t)tan2(t)=cos(t) |
52509 |
Find Amplitude, Period, and Phase Shift |
y=cos(pi/18-x/3)+2 |
y=cos(π18-x3)+2y=cos(π18−x3)+2 |
52510 |
Find Amplitude, Period, and Phase Shift |
y=-1/2cos(x/4+(2pi)/3)-4 |
y=-12cos(x4+2π3)-4y=−12cos(x4+2π3)−4 |
52511 |
Find Amplitude, Period, and Phase Shift |
f(a)=5/3cos(4/5a) |
f(a)=53cos(45a)f(a)=53cos(45a) |
52512 |
Verify the Identity |
(cos(x)-sin(x))/(sin(x)cos(x))=csc(x)-sec(x) |
cos(x)-sin(x)sin(x)cos(x)=csc(x)-sec(x)cos(x)−sin(x)sin(x)cos(x)=csc(x)−sec(x) |
52513 |
Expand the Trigonometric Expression |
sin((3pi)/2+x) |
sin(3π2+x)sin(3π2+x) |
52514 |
Convert from Degrees to Radians |
540deg |
540540 degrees |
52515 |
Verify the Identity |
1/(sec(theta)^2)+1/(csc(theta)^2)=1 |
1sec2(θ)+1csc2(θ)=11sec2(θ)+1csc2(θ)=1 |
52516 |
Find Amplitude, Period, and Phase Shift |
y=1/4cos((3pix)/2-3/5) |
y=14cos(3πx2-35)y=14cos(3πx2−35) |
52517 |
Simplify Using Half-Angle Formula |
cos((11pi)/12) |
cos(11π12)cos(11π12) |
52518 |
Find the Cotangent Given the Point |
(-3/7,(2 square root of 10)/7) |
(-37,2√107)(−37,2√107) |
52519 |
Solve for x in Degrees |
3tan(x)sin(x)=sin(x) |
3tan(x)sin(x)=sin(x)3tan(x)sin(x)=sin(x) |
52520 |
Solve for x in Radians |
square root of 3cot(x)=-1 |
√3cot(x)=-1√3cot(x)=−1 |
52521 |
Solve for x in Degrees |
7sin(x)tan(x)-6tan(x)=0 |
7sin(x)tan(x)-6tan(x)=07sin(x)tan(x)−6tan(x)=0 |
52522 |
Solve for θ in Radians |
2sin(theta) = square root of 3 |
2sin(θ)=√32sin(θ)=√3 |
52523 |
Convert from Radians to Degrees |
4/(3pi) |
43π43π |
52524 |
Convert to Trigonometric Form |
cos(pi/3) |
cos(π3)cos(π3) |
52525 |
Find Amplitude, Period, and Phase Shift |
y=cos(3pix-(2pi)/3) |
y=cos(3πx-2π3)y=cos(3πx−2π3) |
52526 |
Find the Coterminal Angle |
-(53pi)/6 |
-53π6−53π6 |
52527 |
Find the Reference Angle |
sec(585 degrees ) |
sec(585°)sec(585°) |
52528 |
Solve for x in Radians |
2sin(x)^2+cos(x)-1=0 |
2sin2(x)+cos(x)-1=02sin2(x)+cos(x)−1=0 |
52529 |
Verify the Identity |
tan(x)=(sec(x))/(csc(x)) |
tan(x)=sec(x)csc(x)tan(x)=sec(x)csc(x) |
52530 |
Solve for θ in Degrees |
2cos(theta)-3=5cos(theta)-5 |
2cos(θ)-3=5cos(θ)-52cos(θ)−3=5cos(θ)−5 |
52531 |
Convert from Radians to Degrees |
arcsec(2/( square root of 3)) |
arcsec(2√3)arcsec(2√3) |
52532 |
Convert from Degrees to Radians |
-60^o |
-60o−60o |
52533 |
Convert from Radians to Degrees |
5*180/pi |
5⋅180π5⋅180π |
52534 |
Solve for θ in Radians |
sin(2theta)+cos(theta)=0 |
sin(2θ)+cos(θ)=0sin(2θ)+cos(θ)=0 |
52535 |
Find the Secant Given the Point |
(-5/9,(2 square root of 14)/9) |
(-59,2√149)(−59,2√149) |
52536 |
Solve for θ in Radians |
sec(theta)=undefined |
sec(θ)=undefinedsec(θ)=undefined |
52537 |
Find the Coterminal Angle |
-5/4pi |
-54π−54π |
52538 |
Find Amplitude, Period, and Phase Shift |
y=3cos(x+(5pi)/6) |
y=3cos(x+5π6)y=3cos(x+5π6) |
52539 |
Solve for x in Radians |
2sin(x)^2=sin(x) |
2sin2(x)=sin(x)2sin2(x)=sin(x) |
52540 |
Solve for x in Degrees |
sin(x)+1=0 |
sin(x)+1=0sin(x)+1=0 |
52541 |
Solve for x in Radians |
cos(2x)=-1/2 |
cos(2x)=-12cos(2x)=−12 |
52542 |
Solve for θ in Radians |
theta=(-7pi)/4 |
θ=-7π4θ=−7π4 |
52543 |
Expand the Trigonometric Expression |
2sin(10 degrees )cos(10 degrees ) |
2sin(10°)cos(10°)2sin(10°)cos(10°) |
52544 |
Find the Reference Angle |
cos((3pi)/2) |
cos(3π2)cos(3π2) |
52545 |
Expand Using Sum/Difference Formulas |
(3x+7)(3x-7) |
(3x+7)(3x-7)(3x+7)(3x−7) |
52546 |
Solve for x in Radians |
sin(2x)-cos(x)=0 |
sin(2x)-cos(x)=0sin(2x)−cos(x)=0 |
52547 |
Find the Tangent of the Angle |
pi/3 |
π3π3 |
52548 |
Find the Sine of the Angle |
pi/3 |
π3π3 |
52549 |
Solve for θ in Radians |
sec((3theta)/2)=-2 |
sec(3θ2)=-2sec(3θ2)=−2 |
52550 |
Find the Reference Angle |
cot(-(10pi)/3) |
cot(-10π3)cot(−10π3) |
52551 |
Find the Reference Angle |
315deg |
315315 degrees |
52552 |
Expand Using Sum/Difference Formulas |
a(8+2b-6) |
a(8+2b-6)a(8+2b−6) |
52553 |
Convert from Radians to Degrees |
arccos(2.3/2.8) |
arccos(2.32.8)arccos(2.32.8) |
52554 |
Solve for x in Radians |
cos(x)^2=3/4 |
cos2(x)=34cos2(x)=34 |
52555 |
Solve for θ in Degrees |
16cos(theta)^2-25=0 |
16cos2(θ)-25=016cos2(θ)−25=0 |
52556 |
Find the Secant Given the Point |
(3, square root of 2) |
(3,√2)(3,√2) |
52557 |
Solve for θ in Degrees |
sin(2theta)-cos(theta)=0 |
sin(2θ)-cos(θ)=0sin(2θ)−cos(θ)=0 |
52558 |
Find Amplitude, Period, and Phase Shift |
y=3tan(2x+pi)-2 |
y=3tan(2x+π)-2y=3tan(2x+π)−2 |
52559 |
Convert from Radians to Degrees |
(5pi)/4*180/pi |
5π4⋅180π5π4⋅180π |
52560 |
Find Amplitude, Period, and Phase Shift |
y=-4cos(x-pi/2)+2 |
y=-4cos(x-π2)+2y=−4cos(x−π2)+2 |
52561 |
Find the Reference Angle |
tan((11pi)/6) |
tan(11π6)tan(11π6) |
52562 |
Verify the Identity |
1+(tan(theta))/(cot(theta))=sec(theta)^2 |
1+tan(θ)cot(θ)=sec2(θ)1+tan(θ)cot(θ)=sec2(θ) |
52563 |
Solve for θ in Degrees |
2csc(theta)-3=0 |
2csc(θ)-3=02csc(θ)−3=0 |
52564 |
Find the Coterminal Angle |
-1323 |
-1323−1323 |
52565 |
Convert from Radians to Degrees |
arccos(2.9/3.2) |
arccos(2.93.2)arccos(2.93.2) |
52566 |
Solve for θ in Radians |
sin(theta)=(- square root of 3)/2 |
sin(θ)=-√32sin(θ)=−√32 |
52567 |
Find Amplitude, Period, and Phase Shift |
y=1/2cos((6pix)/5-1) |
y=12cos(6πx5-1)y=12cos(6πx5−1) |
52568 |
Solve for x in Degrees |
9tan(x)sin(x)=10sin(x) |
9tan(x)sin(x)=10sin(x)9tan(x)sin(x)=10sin(x) |
52569 |
Solve for x in Degrees |
8sin(x)tan(x)-7tan(x)=0 |
8sin(x)tan(x)-7tan(x)=08sin(x)tan(x)−7tan(x)=0 |
52570 |
Verify the Identity |
3x+7=3(x+2)+1 |
3x+7=3(x+2)+13x+7=3(x+2)+1 |
52571 |
Find Amplitude, Period, and Phase Shift |
y=2cos(2x+pi)-1 |
y=2cos(2x+π)-1y=2cos(2x+π)−1 |
52572 |
Solve for x in Radians |
2sin(x)cos(x) = square root of 2cos(x) |
2sin(x)cos(x)=√2cos(x)2sin(x)cos(x)=√2cos(x) |
52573 |
Find the Length of c |
tri{4}{30}{}{60}{}{90} |
SideAngleb=4c=a=A=30B=60C=90SideAngleb=4c=a=A=30B=60C=90 |
52574 |
Convert from Radians to Degrees |
arctan(5.6/9.7) |
arctan(5.69.7)arctan(5.69.7) |
52575 |
Find the Length of a |
tri{9}{30}{}{60}{}{90} |
SideAngleb=9c=a=A=30B=60C=90SideAngleb=9c=a=A=30B=60C=90 |
52576 |
Solve for θ in Degrees |
4csc(theta)+5=0 |
4csc(θ)+5=04csc(θ)+5=0 |
52577 |
Verify the Identity |
sec(x)^6(sec(x)tan(x))-sec(x)^4(sec(x)tan(x))=sec(x)^5tan(x)^3 |
sec6(x)(sec(x)tan(x))-sec4(x)(sec(x)tan(x))=sec5(x)tan3(x)sec6(x)(sec(x)tan(x))−sec4(x)(sec(x)tan(x))=sec5(x)tan3(x) |
52578 |
Find Amplitude, Period, and Phase Shift |
f(x)=sin(2(x-pi/2))+1 |
f(x)=sin(2(x-π2))+1f(x)=sin(2(x−π2))+1 |
52579 |
Expand Using Sum/Difference Formulas |
sin((3pi)/2+theta) |
sin(3π2+θ)sin(3π2+θ) |
52580 |
Solve for x in Degrees |
2cos(x)tan(x)=9tan(x) |
2cos(x)tan(x)=9tan(x)2cos(x)tan(x)=9tan(x) |
52581 |
Convert to Trigonometric Form |
cot(theta)sin(theta) |
cot(θ)sin(θ)cot(θ)sin(θ) |
52582 |
Convert from Radians to Degrees |
1.5rad |
1.51.5 rad |
52583 |
Solve for θ in Degrees |
3tan(theta)-2=tan(theta) |
3tan(θ)-2=tan(θ)3tan(θ)−2=tan(θ) |
52584 |
Convert from Radians to Degrees |
(11pi)/9rad |
11π911π9 radians |
52585 |
Find the Cosine of the Angle |
135 |
135135 |
52586 |
Verify the Identity |
(x+5)^2=x^2+10x+25 |
(x+5)2=x2+10x+25(x+5)2=x2+10x+25 |
52587 |
Expand Using Sum/Difference Formulas |
x(4x+1) |
x(4x+1)x(4x+1) |
52588 |
Find the Length of a |
tri{}{45}{2}{45}{}{90} |
SideAngleb=c=2a=A=45B=45C=90SideAngleb=c=2a=A=45B=45C=90 |
52589 |
Find Trig Functions Using Identities |
sin(theta)=(2 square root of 5)/5 , cos(theta)=( square root of 5)/5 |
sin(θ)=2√55sin(θ)=2√55 , cos(θ)=√55cos(θ)=√55 |
52590 |
Solve for x in Radians |
csc(x)^2+csc(x)=2 |
csc2(x)+csc(x)=2csc2(x)+csc(x)=2 |
52591 |
Find the Reference Angle |
csc(-pi/3) |
csc(-π3)csc(−π3) |
52592 |
Find Amplitude, Period, and Phase Shift |
y=7/8cos((pix)/4) |
y=78cos(πx4)y=78cos(πx4) |
52593 |
Find the Length of a |
tri{}{30}{6}{60}{}{90} |
SideAngleb=c=6a=A=30B=60C=90SideAngleb=c=6a=A=30B=60C=90 |
52594 |
Solve for x in Radians |
sin(2x) = square root of 2sin(x) |
sin(2x)=√2sin(x)sin(2x)=√2sin(x) |
52595 |
Solve for θ in Radians |
sin(theta)^2+cos(theta)^2=1 |
sin2(θ)+cos2(θ)=1sin2(θ)+cos2(θ)=1 |
52596 |
Find the Tangent of the Angle |
(2pi)/3 |
2π32π3 |
52597 |
Verify the Identity |
sin(x)=2sin(x/2)cos(x/2) |
sin(x)=2sin(x2)cos(x2)sin(x)=2sin(x2)cos(x2) |
52598 |
Find the Cosine of the Angle |
-(2pi)/3 |
-2π3−2π3 |
52599 |
Find Amplitude, Period, and Phase Shift |
y=1/4sin(x/6) |
y=14sin(x6)y=14sin(x6) |
52600 |
Solve for θ in Radians |
sin(theta)^2-1=0 |
sin2(θ)-1=0sin2(θ)−1=0 |