Enter a problem...
Trigonometry Examples
(x+5)2=x2+10x+25
Step 1
Rewrite (x+5)2 as (x+5)(x+5).
(x+5)(x+5)=x2+10x+25
Step 2
Step 2.1
Apply the distributive property.
x(x+5)+5(x+5)=x2+10x+25
Step 2.2
Apply the distributive property.
x⋅x+x⋅5+5(x+5)=x2+10x+25
Step 2.3
Apply the distributive property.
x⋅x+x⋅5+5x+5⋅5=x2+10x+25
x⋅x+x⋅5+5x+5⋅5=x2+10x+25
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Multiply x by x.
x2+x⋅5+5x+5⋅5=x2+10x+25
Step 3.1.2
Move 5 to the left of x.
x2+5⋅x+5x+5⋅5=x2+10x+25
Step 3.1.3
Multiply 5 by 5.
x2+5x+5x+25=x2+10x+25
x2+5x+5x+25=x2+10x+25
Step 3.2
Add 5x and 5x.
x2+10x+25=x2+10x+25
x2+10x+25=x2+10x+25
Step 4
Since the two sides have been shown to be equivalent, the equation is an identity.
(x+5)2=x2+10x+25 is an identity.