Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=cos(pi/18-x/3)+2
y=cos(π18-x3)+2y=cos(π18x3)+2
Step 1
Use the form acos(bx-c)+dacos(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1a=1
b=-13b=13
c=-π18c=π18
d=2d=2
Step 2
Find the amplitude |a||a|.
Amplitude: 11
Step 3
Find the period using the formula 2π|b|2π|b|.
Tap for more steps...
Step 3.1
Find the period of cos(π18-x3)cos(π18x3).
Tap for more steps...
Step 3.1.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.1.2
Replace bb with -1313 in the formula for period.
2π|-13|2π13
Step 3.1.3
-1313 is approximately -0.30.¯3 which is negative so negate -1313 and remove the absolute value
2π132π13
Step 3.1.4
Multiply the numerator by the reciprocal of the denominator.
2π32π3
Step 3.1.5
Multiply 33 by 22.
6π6π
6π6π
Step 3.2
Find the period of 22.
Tap for more steps...
Step 3.2.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2.2
Replace bb with -1313 in the formula for period.
2π|-13|2π13
Step 3.2.3
-1313 is approximately -0.30.¯3 which is negative so negate -1313 and remove the absolute value
2π132π13
Step 3.2.4
Multiply the numerator by the reciprocal of the denominator.
2π32π3
Step 3.2.5
Multiply 33 by 22.
6π6π
6π6π
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
6π6π
6π6π
Step 4
Find the phase shift using the formula cbcb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: -π18-13π1813
Step 4.3
Dividing two negative values results in a positive value.
Phase Shift: π1813π1813
Step 4.4
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: π183π183
Step 4.5
Cancel the common factor of 33.
Tap for more steps...
Step 4.5.1
Factor 33 out of 1818.
Phase Shift: π3(6)3π3(6)3
Step 4.5.2
Cancel the common factor.
Phase Shift: π363
Step 4.5.3
Rewrite the expression.
Phase Shift: π6
Phase Shift: π6
Phase Shift: π6
Step 5
List the properties of the trigonometric function.
Amplitude: 1
Period: 6π
Phase Shift: π6 (π6 to the right)
Vertical Shift: 2
Step 6
 [x2  12  π  xdx ]