Enter a problem...
Trigonometry Examples
arcsec(2√3)arcsec(2√3)
Step 1
To convert radians to degrees, multiply by 180π180π, since a full circle is 360°360° or 2π2π radians.
(arcsec(2√3))⋅180°π(arcsec(2√3))⋅180°π
Step 2
Multiply 2√32√3 by √3√3√3√3.
arcsec(2√3⋅√3√3)⋅180πarcsec(2√3⋅√3√3)⋅180π
Step 3
Step 3.1
Multiply 2√32√3 by √3√3√3√3.
arcsec(2√3√3√3)⋅180πarcsec(2√3√3√3)⋅180π
Step 3.2
Raise √3√3 to the power of 11.
arcsec(2√3√31√3)⋅180πarcsec(2√3√31√3)⋅180π
Step 3.3
Raise √3√3 to the power of 11.
arcsec(2√3√31√31)⋅180πarcsec(2√3√31√31)⋅180π
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
arcsec(2√3√31+1)⋅180πarcsec(2√3√31+1)⋅180π
Step 3.5
Add 11 and 11.
arcsec(2√3√32)⋅180πarcsec(2√3√32)⋅180π
Step 3.6
Rewrite √32√32 as 33.
Step 3.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
arcsec(2√3(312)2)⋅180πarcsec⎛⎜
⎜⎝2√3(312)2⎞⎟
⎟⎠⋅180π
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
arcsec(2√3312⋅2)⋅180πarcsec(2√3312⋅2)⋅180π
Step 3.6.3
Combine 1212 and 22.
arcsec(2√3322)⋅180πarcsec(2√3322)⋅180π
Step 3.6.4
Cancel the common factor of 22.
Step 3.6.4.1
Cancel the common factor.
arcsec(2√3322)⋅180π
Step 3.6.4.2
Rewrite the expression.
arcsec(2√331)⋅180π
arcsec(2√331)⋅180π
Step 3.6.5
Evaluate the exponent.
arcsec(2√33)⋅180π
arcsec(2√33)⋅180π
arcsec(2√33)⋅180π
Step 4
Evaluate arcsec(2√33).
π6⋅180π
Step 5
Step 5.1
Cancel the common factor.
π6⋅180π
Step 5.2
Rewrite the expression.
16⋅180
16⋅180
Step 6
Step 6.1
Factor 6 out of 180.
16⋅(6(30))
Step 6.2
Cancel the common factor.
16⋅(6⋅30)
Step 6.3
Rewrite the expression.
30
30
Step 7
Convert to a decimal.
30°