Trigonometry Examples

Convert from Radians to Degrees arcsec(2/( square root of 3))
arcsec(23)arcsec(23)
Step 1
To convert radians to degrees, multiply by 180π180π, since a full circle is 360°360° or 2π2π radians.
(arcsec(23))180°π(arcsec(23))180°π
Step 2
Multiply 2323 by 3333.
arcsec(2333)180πarcsec(2333)180π
Step 3
Combine and simplify the denominator.
Tap for more steps...
Step 3.1
Multiply 2323 by 3333.
arcsec(2333)180πarcsec(2333)180π
Step 3.2
Raise 33 to the power of 11.
arcsec(23313)180πarcsec(23313)180π
Step 3.3
Raise 33 to the power of 11.
arcsec(233131)180πarcsec(233131)180π
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
arcsec(2331+1)180πarcsec(2331+1)180π
Step 3.5
Add 11 and 11.
arcsec(2332)180πarcsec(2332)180π
Step 3.6
Rewrite 3232 as 33.
Tap for more steps...
Step 3.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
arcsec(23(312)2)180πarcsec⎜ ⎜23(312)2⎟ ⎟180π
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
arcsec(233122)180πarcsec(233122)180π
Step 3.6.3
Combine 1212 and 22.
arcsec(23322)180πarcsec(23322)180π
Step 3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 3.6.4.1
Cancel the common factor.
arcsec(23322)180π
Step 3.6.4.2
Rewrite the expression.
arcsec(2331)180π
arcsec(2331)180π
Step 3.6.5
Evaluate the exponent.
arcsec(233)180π
arcsec(233)180π
arcsec(233)180π
Step 4
Evaluate arcsec(233).
π6180π
Step 5
Cancel the common factor of π.
Tap for more steps...
Step 5.1
Cancel the common factor.
π6180π
Step 5.2
Rewrite the expression.
16180
16180
Step 6
Cancel the common factor of 6.
Tap for more steps...
Step 6.1
Factor 6 out of 180.
16(6(30))
Step 6.2
Cancel the common factor.
16(630)
Step 6.3
Rewrite the expression.
30
30
Step 7
Convert to a decimal.
30°
 [x2  12  π  xdx ]