Trigonometry Examples

Find the Cotangent Given the Point (-3/7,(2 square root of 10)/7)
(-37,2107)
Step 1
To find the cot(θ) between the x-axis and the line between the points (0,0) and (-37,2107), draw the triangle between the three points (0,0), (-37,0), and (-37,2107).
Opposite : 2107
Adjacent : -37
Step 2
cot(θ)=AdjacentOpposite therefore cot(θ)=-372107.
-372107
Step 3
Simplify cot(θ).
Tap for more steps...
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
cot(θ)=-377210
Step 3.2
Cancel the common factor of 7.
Tap for more steps...
Step 3.2.1
Move the leading negative in -37 into the numerator.
cot(θ)=-377210
Step 3.2.2
Cancel the common factor.
cot(θ)=-377210
Step 3.2.3
Rewrite the expression.
cot(θ)=-31210
cot(θ)=-31210
Step 3.3
Combine -3 and 1210.
cot(θ)=-3210
Step 3.4
Move the negative in front of the fraction.
cot(θ)=-3210
Step 3.5
Multiply 3210 by 1010.
cot(θ)=-(32101010)
Step 3.6
Combine and simplify the denominator.
Tap for more steps...
Step 3.6.1
Multiply 3210 by 1010.
cot(θ)=-31021010
Step 3.6.2
Move 10.
cot(θ)=-3102(1010)
Step 3.6.3
Raise 10 to the power of 1.
cot(θ)=-3102(1010)
Step 3.6.4
Raise 10 to the power of 1.
cot(θ)=-3102(1010)
Step 3.6.5
Use the power rule aman=am+n to combine exponents.
cot(θ)=-3102101+1
Step 3.6.6
Add 1 and 1.
cot(θ)=-3102102
Step 3.6.7
Rewrite 102 as 10.
Tap for more steps...
Step 3.6.7.1
Use nax=axn to rewrite 10 as 1012.
cot(θ)=-3102(1012)2
Step 3.6.7.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=-310210122
Step 3.6.7.3
Combine 12 and 2.
cot(θ)=-31021022
Step 3.6.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.6.7.4.1
Cancel the common factor.
cot(θ)=-31021022
Step 3.6.7.4.2
Rewrite the expression.
cot(θ)=-310210
cot(θ)=-310210
Step 3.6.7.5
Evaluate the exponent.
cot(θ)=-310210
cot(θ)=-310210
cot(θ)=-310210
Step 3.7
Multiply 2 by 10.
cot(θ)=-31020
cot(θ)=-31020
Step 4
Approximate the result.
cot(θ)=-31020-0.47434164
 [x2  12  π  xdx ]