Enter a problem...
Trigonometry Examples
(-37,2√107)
Step 1
To find the cot(θ) between the x-axis and the line between the points (0,0) and (-37,2√107), draw the triangle between the three points (0,0), (-37,0), and (-37,2√107).
Opposite : 2√107
Adjacent : -37
Step 2
cot(θ)=AdjacentOpposite therefore cot(θ)=-372√107.
-372√107
Step 3
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
cot(θ)=-37⋅72√10
Step 3.2
Cancel the common factor of 7.
Step 3.2.1
Move the leading negative in -37 into the numerator.
cot(θ)=-37⋅72√10
Step 3.2.2
Cancel the common factor.
cot(θ)=-37⋅72√10
Step 3.2.3
Rewrite the expression.
cot(θ)=-312√10
cot(θ)=-312√10
Step 3.3
Combine -3 and 12√10.
cot(θ)=-32√10
Step 3.4
Move the negative in front of the fraction.
cot(θ)=-32√10
Step 3.5
Multiply 32√10 by √10√10.
cot(θ)=-(32√10⋅√10√10)
Step 3.6
Combine and simplify the denominator.
Step 3.6.1
Multiply 32√10 by √10√10.
cot(θ)=-3√102√10√10
Step 3.6.2
Move √10.
cot(θ)=-3√102(√10√10)
Step 3.6.3
Raise √10 to the power of 1.
cot(θ)=-3√102(√10√10)
Step 3.6.4
Raise √10 to the power of 1.
cot(θ)=-3√102(√10√10)
Step 3.6.5
Use the power rule aman=am+n to combine exponents.
cot(θ)=-3√102√101+1
Step 3.6.6
Add 1 and 1.
cot(θ)=-3√102√102
Step 3.6.7
Rewrite √102 as 10.
Step 3.6.7.1
Use n√ax=axn to rewrite √10 as 1012.
cot(θ)=-3√102(1012)2
Step 3.6.7.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=-3√102⋅1012⋅2
Step 3.6.7.3
Combine 12 and 2.
cot(θ)=-3√102⋅1022
Step 3.6.7.4
Cancel the common factor of 2.
Step 3.6.7.4.1
Cancel the common factor.
cot(θ)=-3√102⋅1022
Step 3.6.7.4.2
Rewrite the expression.
cot(θ)=-3√102⋅10
cot(θ)=-3√102⋅10
Step 3.6.7.5
Evaluate the exponent.
cot(θ)=-3√102⋅10
cot(θ)=-3√102⋅10
cot(θ)=-3√102⋅10
Step 3.7
Multiply 2 by 10.
cot(θ)=-3√1020
cot(θ)=-3√1020
Step 4
Approximate the result.
cot(θ)=-3√1020≈-0.47434164