Enter a problem...
Trigonometry Examples
sin(3π2+x)sin(3π2+x)
Step 1
Apply the sum of angles identity.
sin(3π2)cos(x)+cos(3π2)sin(x)sin(3π2)cos(x)+cos(3π2)sin(x)
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
-sin(π2)cos(x)+cos(3π2)sin(x)−sin(π2)cos(x)+cos(3π2)sin(x)
Step 2.1.2
The exact value of sin(π2)sin(π2) is 11.
-1⋅1cos(x)+cos(3π2)sin(x)−1⋅1cos(x)+cos(3π2)sin(x)
Step 2.1.3
Multiply -1−1 by 11.
-1cos(x)+cos(3π2)sin(x)−1cos(x)+cos(3π2)sin(x)
Step 2.1.4
Rewrite -1cos(x)−1cos(x) as -cos(x)−cos(x).
-cos(x)+cos(3π2)sin(x)−cos(x)+cos(3π2)sin(x)
Step 2.1.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-cos(x)+cos(π2)sin(x)−cos(x)+cos(π2)sin(x)
Step 2.1.6
The exact value of cos(π2)cos(π2) is 00.
-cos(x)+0sin(x)−cos(x)+0sin(x)
Step 2.1.7
Multiply 00 by sin(x)sin(x).
-cos(x)+0−cos(x)+0
-cos(x)+0−cos(x)+0
Step 2.2
Add -cos(x)−cos(x) and 00.
-cos(x)−cos(x)
-cos(x)−cos(x)