52301 |
Find Amplitude, Period, and Phase Shift |
f(x)=sin(pi/3x+pi) |
f(x)=sin(π3x+π)f(x)=sin(π3x+π) |
52302 |
Convert to Rectangular Coordinates |
( square root of 3,pi) |
(√3,π)(√3,π) |
52303 |
Find Amplitude, Period, and Phase Shift |
f(x)=2sec(2x)+1 |
f(x)=2sec(2x)+1f(x)=2sec(2x)+1 |
52304 |
Find the Coterminal Angle |
-2/5pi |
-25π−25π |
52305 |
Solve for A in Degrees |
10sin(A)+16=3sin(A)+9 |
10sin(A)+16=3sin(A)+910sin(A)+16=3sin(A)+9 |
52306 |
Solve for θ in Degrees |
tan(theta)-5=4tan(theta)-5 |
tan(θ)-5=4tan(θ)-5tan(θ)−5=4tan(θ)−5 |
52307 |
Find the Sine Given the Point |
((2 square root of 13)/13,-(3 square root of 13)/13) |
(2√1313,-3√1313)(2√1313,−3√1313) |
52308 |
Find the Cosine Given the Point |
((2 square root of 13)/13,-(3 square root of 13)/13) |
(2√1313,-3√1313)(2√1313,−3√1313) |
52309 |
Solve for a in Degrees |
tan(a)=2.0503 |
tan(a)=2.0503tan(a)=2.0503 |
52310 |
Find the Secant Given the Point |
(-1/5,(2 square root of 6)/5) |
(-15,2√65)(−15,2√65) |
52311 |
Find Amplitude, Period, and Phase Shift |
y=4sin((4pix)/5-3) |
y=4sin(4πx5-3)y=4sin(4πx5−3) |
52312 |
Find the Trig Value |
cot(theta)=5/12 , csc(theta) |
cot(θ)=512cot(θ)=512 , csc(θ)csc(θ) |
52313 |
Solve for x in Degrees |
7cos(x)sin(x)=-sin(x) |
7cos(x)sin(x)=-sin(x)7cos(x)sin(x)=−sin(x) |
52314 |
Solve for θ in Degrees |
cot(theta)^2-9=0 |
cot2(θ)-9=0cot2(θ)−9=0 |
52315 |
Find Amplitude, Period, and Phase Shift |
y=cos(2(theta-pi)) |
y=cos(2(θ-π))y=cos(2(θ−π)) |
52316 |
Expand Using Sum/Difference Formulas |
log base x of 3m(4n) |
logx(3m)(4n)logx(3m)(4n) |
52317 |
Convert from Radians to Degrees |
pi/3*180/pi |
π3⋅180ππ3⋅180π |
52318 |
Find the Trig Value |
tan(theta)=4/3 , 0<=theta<=pi/2 |
tan(θ)=43tan(θ)=43 , 0≤θ≤π20≤θ≤π2 |
52319 |
Solve for θ in Degrees |
2tan(theta)^2-5tan(theta)+4=-8tan(theta)+6 |
2tan2(θ)-5tan(θ)+4=-8tan(θ)+62tan2(θ)−5tan(θ)+4=−8tan(θ)+6 |
52320 |
Find Amplitude, Period, and Phase Shift |
y=sin((2x)/7+(3pi)/2) |
y=sin(2x7+3π2)y=sin(2x7+3π2) |
52321 |
Find Amplitude, Period, and Phase Shift |
f(x)=2*cos(8/3x) |
f(x)=2⋅cos(83x)f(x)=2⋅cos(83x) |
52322 |
Convert to Trigonometric Form |
(1-sin(x))/(cos(x)) |
1-sin(x)cos(x)1−sin(x)cos(x) |
52323 |
Solve for x in Radians |
csc(x) = square root of 2 |
csc(x)=√2csc(x)=√2 |
52324 |
Find Amplitude, Period, and Phase Shift |
y=1/4cos((4x)/7+(5pi)/6) |
y=14cos(4x7+5π6)y=14cos(4x7+5π6) |
52325 |
Verify |
tan(x)+cot(x)=sec(x)csc(x) |
tan(x)+cot(x)=sec(x)csc(x)tan(x)+cot(x)=sec(x)csc(x) |
52326 |
Solve for θ in Radians |
sin(2theta)+ square root of 2cos(theta)=0 |
sin(2θ)+√2cos(θ)=0sin(2θ)+√2cos(θ)=0 |
52327 |
Solve for θ in Radians |
cos(theta)=(- square root of 3)/2 |
cos(θ)=-√32cos(θ)=−√32 |
52328 |
Expand the Trigonometric Expression |
tan(90-theta) |
tan(90-θ)tan(90−θ) |
52329 |
Convert from Radians to Degrees |
3.26pirad |
3.26π3.26π rad |
52330 |
Expand Using Sum/Difference Formulas |
(x+3)(x+5) |
(x+3)(x+5)(x+3)(x+5) |
52331 |
Find the Tangent of the Angle |
pi/4 |
π4π4 |
52332 |
Solve for x in Degrees |
5cos(x)tan(x)=9tan(x) |
5cos(x)tan(x)=9tan(x)5cos(x)tan(x)=9tan(x) |
52333 |
Verify the Identity |
(c-s)(c+s)=c^2-s^2 |
(c-s)(c+s)=c2-s2(c−s)(c+s)=c2−s2 |
52334 |
Find the Secant Given the Point |
((3 square root of 13)/13,-(2 square root of 13)/13) |
(3√1313,-2√1313)(3√1313,−2√1313) |
52335 |
Solve for x in Degrees |
sec(x)=-2 |
sec(x)=-2sec(x)=−2 |
52336 |
Find the Cosine of the Angle |
-pi/2 |
-π2−π2 |
52337 |
Solve for θ in Degrees |
2sin(theta)^2=sin(theta) |
2sin2(θ)=sin(θ)2sin2(θ)=sin(θ) |
52338 |
Convert to Trigonometric Form |
(6(cos(pi/3)+isin(pi/3)))/(3(cos(pi/6)+isin(pi/6))) |
6(cos(π3)+isin(π3))3(cos(π6)+isin(π6))6(cos(π3)+isin(π3))3(cos(π6)+isin(π6)) |
52339 |
Find the Reference Angle |
cot(225 degrees ) |
cot(225°)cot(225°) |
52340 |
Find the Length of c |
tri{}{30}{}{60}{12}{90} |
SideAngleb=c=a=12A=30B=60C=90SideAngleb=c=a=12A=30B=60C=90 |
52341 |
Find Amplitude, Period, and Phase Shift |
y=5sin(2/3x-2/9pi) |
y=5sin(23x-29π) |
52342 |
Solve for θ in Radians |
2sin(theta)+4=4 |
2sin(θ)+4=4 |
52343 |
Expand Using Sum/Difference Formulas |
cos(x-pi/4) |
cos(x-π4) |
52344 |
Solve for x in Radians |
square root of 3cot(x)+1=0 |
√3cot(x)+1=0 |
52345 |
Solve for x in Degrees |
8tan(x)sin(x)=sin(x) |
8tan(x)sin(x)=sin(x) |
52346 |
Solve for θ in Degrees |
2cos(2theta)^2=1-cos(2theta) |
2cos2(2θ)=1-cos(2θ) |
52347 |
Convert to Rectangular Coordinates |
(8,15 degrees ) |
(8,15°) |
52348 |
Solve for θ in Degrees |
cos(theta)^2+cos(theta)=0 |
cos2(θ)+cos(θ)=0 |
52349 |
Find Amplitude, Period, and Phase Shift |
y=2cos(4pix-5) |
y=2cos(4πx-5) |
52350 |
Find the Coterminal Angle |
25pi |
25π |
52351 |
Solve for θ in Degrees |
sin(theta)^2-16=0 |
sin2(θ)-16=0 |
52352 |
Convert to Trigonometric Form |
cos(x+y) |
cos(x+y) |
52353 |
Find Amplitude, Period, and Phase Shift |
y=3sin(2pix+4) |
y=3sin(2πx+4) |
52354 |
Convert from Radians to Degrees |
arctan(( square root of 3)/1) |
arctan(√31) |
52355 |
Solve for θ in Degrees |
-270=1900sin(theta) |
-270=1900sin(θ) |
52356 |
Convert from Radians to Degrees |
arcsin(-3/5) |
arcsin(-35) |
52357 |
Find Trig Functions Using Identities |
sec(x)=-5/2 , tan(x)<0 |
sec(x)=-52 , tan(x)<0 |
52358 |
Find Trig Functions Using Identities |
tan(theta)=3/4 , sin(theta)>0 |
tan(θ)=34 , sin(θ)>0 |
52359 |
Find Amplitude, Period, and Phase Shift |
y=sin((3pix)/2-3/5) |
y=sin(3πx2-35) |
52360 |
Find the Cosine of the Angle |
225 degrees |
225° |
52361 |
Find the Reference Angle |
sin((11pi)/4) |
sin(11π4) |
52362 |
Convert from Degrees to Radians |
( square root of 3)/2 |
√32 |
52363 |
Find the Cosecant Given the Point |
(2/19,y) |
(219,y) |
52364 |
Solve for θ in Radians |
sec(theta)+1=0 |
sec(θ)+1=0 |
52365 |
Expand Using Sum/Difference Formulas |
(4+x)(4-x) |
(4+x)(4-x) |
52366 |
Verify the Identity |
(x+3)^2(x^3+3x^2+3x+1)=(x^2+6x+9)(x+1)^3 |
(x+3)2(x3+3x2+3x+1)=(x2+6x+9)(x+1)3 |
52367 |
Find the Reference Angle |
cos(-(7pi)/6) |
cos(-7π6) |
52368 |
Convert from Degrees to Radians |
45 degrees *pi/180 degrees |
45°⋅π180° |
52369 |
Find Amplitude, Period, and Phase Shift |
y=1/3cos(2x+4pi) |
y=13cos(2x+4π) |
52370 |
Expand Using Sum/Difference Formulas |
cos(270 degrees -theta) |
cos(270°-θ) |
52371 |
Solve for x in Degrees |
sec(x) = square root of 2 |
sec(x)=√2 |
52372 |
Find Amplitude, Period, and Phase Shift |
y=4cos((4pix)/7+5) |
y=4cos(4πx7+5) |
52373 |
Convert from Radians to Degrees |
-20rad |
-20 rad |
52374 |
Solve for x in Radians |
cos(x)=0.5 |
cos(x)=0.5 |
52375 |
Find Amplitude, Period, and Phase Shift |
y=cos((4pix)/7-2pi) |
y=cos(4πx7-2π) |
52376 |
Solve for x in Radians |
2sin(x)^2-5sin(x)+2=0 |
2sin2(x)-5sin(x)+2=0 |
52377 |
Convert from Radians to Degrees |
2/(3pi) |
23π |
52378 |
Verify the Identity |
x^2-y^2=(x-y)(x+y) |
x2-y2=(x-y)(x+y) |
52379 |
Verify the Identity |
(2+csc(A))/(sec(A))-2cos(A)=cot(A) |
2+csc(A)sec(A)-2cos(A)=cot(A) |
52380 |
Expand Using Sum/Difference Formulas |
sin(pi/4-B) |
sin(π4-B) |
52381 |
Solve for x in Degrees |
3cos(x)tan(x)=-5tan(x) |
3cos(x)tan(x)=-5tan(x) |
52382 |
Verify the Identity |
sec(x)^2+cot(x)^2=tan(x)^2+csc(x)^2 |
sec2(x)+cot2(x)=tan2(x)+csc2(x) |
52383 |
Verify the Identity |
(sin(theta))/(1+cos(theta))*(1-cos(theta))/(1-cos(theta))=(1-cos(theta))/(sin(theta)) |
sin(θ)1+cos(θ)⋅1-cos(θ)1-cos(θ)=1-cos(θ)sin(θ) |
52384 |
Solve for x in Radians |
( square root of 2)/2csc(x)-1=0 |
√22csc(x)-1=0 |
52385 |
Find the Reference Angle |
cot(-pi/3) |
cot(-π3) |
52386 |
Find the Length of a |
tri{}{30}{10}{60}{}{90} |
SideAngleb=c=10a=A=30B=60C=90 |
52387 |
Solve for θ in Degrees |
cos(theta)=sin(theta) |
cos(θ)=sin(θ) |
52388 |
Solve for A in Degrees |
-6cos(A)+8=3cos(A)+8 |
-6cos(A)+8=3cos(A)+8 |
52389 |
Find the Reference Angle |
(-(7pi)/6) |
(-7π6) |
52390 |
Expand Using Sum/Difference Formulas |
2(y+5x) |
2(y+5x) |
52391 |
Solve for x in Degrees |
cos(x)sin(x)+sin(x)=0 |
cos(x)sin(x)+sin(x)=0 |
52392 |
Find the Cosine of the Angle |
2pi |
2π |
52393 |
Expand Using Sum/Difference Formulas |
tan(pi/4+x) |
tan(π4+x) |
52394 |
Find Amplitude, Period, and Phase Shift |
y=3-2cos(x/2) |
y=3-2cos(x2) |
52395 |
Find the Reference Angle |
-135deg |
-135 degrees |
52396 |
Find Amplitude, Period, and Phase Shift |
y=1/2cos((pix)/3-3/5) |
y=12cos(πx3-35) |
52397 |
Find the Reference Angle |
cot((41pi)/6) |
cot(41π6) |
52398 |
Solve for θ in Degrees |
csc(theta)^2-4=0 |
csc2(θ)-4=0 |
52399 |
Find the Cotangent of the Angle |
(5pi)/6 |
5π6 |
52400 |
Find the Cotangent Given the Point |
(-2 square root of 3,2) |
(-2√3,2) |