Popular Problems
Rank Topic Problem Formatted Problem
52301 Find Amplitude, Period, and Phase Shift f(x)=sin(pi/3x+pi) f(x)=sin(π3x+π)f(x)=sin(π3x+π)
52302 Convert to Rectangular Coordinates ( square root of 3,pi) (3,π)(3,π)
52303 Find Amplitude, Period, and Phase Shift f(x)=2sec(2x)+1 f(x)=2sec(2x)+1f(x)=2sec(2x)+1
52304 Find the Coterminal Angle -2/5pi -25π25π
52305 Solve for A in Degrees 10sin(A)+16=3sin(A)+9 10sin(A)+16=3sin(A)+910sin(A)+16=3sin(A)+9
52306 Solve for θ in Degrees tan(theta)-5=4tan(theta)-5 tan(θ)-5=4tan(θ)-5tan(θ)5=4tan(θ)5
52307 Find the Sine Given the Point ((2 square root of 13)/13,-(3 square root of 13)/13) (21313,-31313)(21313,31313)
52308 Find the Cosine Given the Point ((2 square root of 13)/13,-(3 square root of 13)/13) (21313,-31313)(21313,31313)
52309 Solve for a in Degrees tan(a)=2.0503 tan(a)=2.0503tan(a)=2.0503
52310 Find the Secant Given the Point (-1/5,(2 square root of 6)/5) (-15,265)(15,265)
52311 Find Amplitude, Period, and Phase Shift y=4sin((4pix)/5-3) y=4sin(4πx5-3)y=4sin(4πx53)
52312 Find the Trig Value cot(theta)=5/12 , csc(theta) cot(θ)=512cot(θ)=512 , csc(θ)csc(θ)
52313 Solve for x in Degrees 7cos(x)sin(x)=-sin(x) 7cos(x)sin(x)=-sin(x)7cos(x)sin(x)=sin(x)
52314 Solve for θ in Degrees cot(theta)^2-9=0 cot2(θ)-9=0cot2(θ)9=0
52315 Find Amplitude, Period, and Phase Shift y=cos(2(theta-pi)) y=cos(2(θ-π))y=cos(2(θπ))
52316 Expand Using Sum/Difference Formulas log base x of 3m(4n) logx(3m)(4n)logx(3m)(4n)
52317 Convert from Radians to Degrees pi/3*180/pi π3180ππ3180π
52318 Find the Trig Value tan(theta)=4/3 , 0<=theta<=pi/2 tan(θ)=43tan(θ)=43 , 0θπ20θπ2
52319 Solve for θ in Degrees 2tan(theta)^2-5tan(theta)+4=-8tan(theta)+6 2tan2(θ)-5tan(θ)+4=-8tan(θ)+62tan2(θ)5tan(θ)+4=8tan(θ)+6
52320 Find Amplitude, Period, and Phase Shift y=sin((2x)/7+(3pi)/2) y=sin(2x7+3π2)y=sin(2x7+3π2)
52321 Find Amplitude, Period, and Phase Shift f(x)=2*cos(8/3x) f(x)=2cos(83x)f(x)=2cos(83x)
52322 Convert to Trigonometric Form (1-sin(x))/(cos(x)) 1-sin(x)cos(x)1sin(x)cos(x)
52323 Solve for x in Radians csc(x) = square root of 2 csc(x)=2csc(x)=2
52324 Find Amplitude, Period, and Phase Shift y=1/4cos((4x)/7+(5pi)/6) y=14cos(4x7+5π6)y=14cos(4x7+5π6)
52325 Verify tan(x)+cot(x)=sec(x)csc(x) tan(x)+cot(x)=sec(x)csc(x)tan(x)+cot(x)=sec(x)csc(x)
52326 Solve for θ in Radians sin(2theta)+ square root of 2cos(theta)=0 sin(2θ)+2cos(θ)=0sin(2θ)+2cos(θ)=0
52327 Solve for θ in Radians cos(theta)=(- square root of 3)/2 cos(θ)=-32cos(θ)=32
52328 Expand the Trigonometric Expression tan(90-theta) tan(90-θ)tan(90θ)
52329 Convert from Radians to Degrees 3.26pirad 3.26π3.26π rad
52330 Expand Using Sum/Difference Formulas (x+3)(x+5) (x+3)(x+5)(x+3)(x+5)
52331 Find the Tangent of the Angle pi/4 π4π4
52332 Solve for x in Degrees 5cos(x)tan(x)=9tan(x) 5cos(x)tan(x)=9tan(x)5cos(x)tan(x)=9tan(x)
52333 Verify the Identity (c-s)(c+s)=c^2-s^2 (c-s)(c+s)=c2-s2(cs)(c+s)=c2s2
52334 Find the Secant Given the Point ((3 square root of 13)/13,-(2 square root of 13)/13) (31313,-21313)(31313,21313)
52335 Solve for x in Degrees sec(x)=-2 sec(x)=-2sec(x)=2
52336 Find the Cosine of the Angle -pi/2 -π2π2
52337 Solve for θ in Degrees 2sin(theta)^2=sin(theta) 2sin2(θ)=sin(θ)2sin2(θ)=sin(θ)
52338 Convert to Trigonometric Form (6(cos(pi/3)+isin(pi/3)))/(3(cos(pi/6)+isin(pi/6))) 6(cos(π3)+isin(π3))3(cos(π6)+isin(π6))6(cos(π3)+isin(π3))3(cos(π6)+isin(π6))
52339 Find the Reference Angle cot(225 degrees ) cot(225°)cot(225°)
52340 Find the Length of c tri{}{30}{}{60}{12}{90} SideAngleb=c=a=12A=30B=60C=90SideAngleb=c=a=12A=30B=60C=90
52341 Find Amplitude, Period, and Phase Shift y=5sin(2/3x-2/9pi) y=5sin(23x-29π)
52342 Solve for θ in Radians 2sin(theta)+4=4 2sin(θ)+4=4
52343 Expand Using Sum/Difference Formulas cos(x-pi/4) cos(x-π4)
52344 Solve for x in Radians square root of 3cot(x)+1=0 3cot(x)+1=0
52345 Solve for x in Degrees 8tan(x)sin(x)=sin(x) 8tan(x)sin(x)=sin(x)
52346 Solve for θ in Degrees 2cos(2theta)^2=1-cos(2theta) 2cos2(2θ)=1-cos(2θ)
52347 Convert to Rectangular Coordinates (8,15 degrees ) (8,15°)
52348 Solve for θ in Degrees cos(theta)^2+cos(theta)=0 cos2(θ)+cos(θ)=0
52349 Find Amplitude, Period, and Phase Shift y=2cos(4pix-5) y=2cos(4πx-5)
52350 Find the Coterminal Angle 25pi 25π
52351 Solve for θ in Degrees sin(theta)^2-16=0 sin2(θ)-16=0
52352 Convert to Trigonometric Form cos(x+y) cos(x+y)
52353 Find Amplitude, Period, and Phase Shift y=3sin(2pix+4) y=3sin(2πx+4)
52354 Convert from Radians to Degrees arctan(( square root of 3)/1) arctan(31)
52355 Solve for θ in Degrees -270=1900sin(theta) -270=1900sin(θ)
52356 Convert from Radians to Degrees arcsin(-3/5) arcsin(-35)
52357 Find Trig Functions Using Identities sec(x)=-5/2 , tan(x)<0 sec(x)=-52 , tan(x)<0
52358 Find Trig Functions Using Identities tan(theta)=3/4 , sin(theta)>0 tan(θ)=34 , sin(θ)>0
52359 Find Amplitude, Period, and Phase Shift y=sin((3pix)/2-3/5) y=sin(3πx2-35)
52360 Find the Cosine of the Angle 225 degrees 225°
52361 Find the Reference Angle sin((11pi)/4) sin(11π4)
52362 Convert from Degrees to Radians ( square root of 3)/2 32
52363 Find the Cosecant Given the Point (2/19,y) (219,y)
52364 Solve for θ in Radians sec(theta)+1=0 sec(θ)+1=0
52365 Expand Using Sum/Difference Formulas (4+x)(4-x) (4+x)(4-x)
52366 Verify the Identity (x+3)^2(x^3+3x^2+3x+1)=(x^2+6x+9)(x+1)^3 (x+3)2(x3+3x2+3x+1)=(x2+6x+9)(x+1)3
52367 Find the Reference Angle cos(-(7pi)/6) cos(-7π6)
52368 Convert from Degrees to Radians 45 degrees *pi/180 degrees 45°π180°
52369 Find Amplitude, Period, and Phase Shift y=1/3cos(2x+4pi) y=13cos(2x+4π)
52370 Expand Using Sum/Difference Formulas cos(270 degrees -theta) cos(270°-θ)
52371 Solve for x in Degrees sec(x) = square root of 2 sec(x)=2
52372 Find Amplitude, Period, and Phase Shift y=4cos((4pix)/7+5) y=4cos(4πx7+5)
52373 Convert from Radians to Degrees -20rad -20 rad
52374 Solve for x in Radians cos(x)=0.5 cos(x)=0.5
52375 Find Amplitude, Period, and Phase Shift y=cos((4pix)/7-2pi) y=cos(4πx7-2π)
52376 Solve for x in Radians 2sin(x)^2-5sin(x)+2=0 2sin2(x)-5sin(x)+2=0
52377 Convert from Radians to Degrees 2/(3pi) 23π
52378 Verify the Identity x^2-y^2=(x-y)(x+y) x2-y2=(x-y)(x+y)
52379 Verify the Identity (2+csc(A))/(sec(A))-2cos(A)=cot(A) 2+csc(A)sec(A)-2cos(A)=cot(A)
52380 Expand Using Sum/Difference Formulas sin(pi/4-B) sin(π4-B)
52381 Solve for x in Degrees 3cos(x)tan(x)=-5tan(x) 3cos(x)tan(x)=-5tan(x)
52382 Verify the Identity sec(x)^2+cot(x)^2=tan(x)^2+csc(x)^2 sec2(x)+cot2(x)=tan2(x)+csc2(x)
52383 Verify the Identity (sin(theta))/(1+cos(theta))*(1-cos(theta))/(1-cos(theta))=(1-cos(theta))/(sin(theta)) sin(θ)1+cos(θ)1-cos(θ)1-cos(θ)=1-cos(θ)sin(θ)
52384 Solve for x in Radians ( square root of 2)/2csc(x)-1=0 22csc(x)-1=0
52385 Find the Reference Angle cot(-pi/3) cot(-π3)
52386 Find the Length of a tri{}{30}{10}{60}{}{90} SideAngleb=c=10a=A=30B=60C=90
52387 Solve for θ in Degrees cos(theta)=sin(theta) cos(θ)=sin(θ)
52388 Solve for A in Degrees -6cos(A)+8=3cos(A)+8 -6cos(A)+8=3cos(A)+8
52389 Find the Reference Angle (-(7pi)/6) (-7π6)
52390 Expand Using Sum/Difference Formulas 2(y+5x) 2(y+5x)
52391 Solve for x in Degrees cos(x)sin(x)+sin(x)=0 cos(x)sin(x)+sin(x)=0
52392 Find the Cosine of the Angle 2pi 2π
52393 Expand Using Sum/Difference Formulas tan(pi/4+x) tan(π4+x)
52394 Find Amplitude, Period, and Phase Shift y=3-2cos(x/2) y=3-2cos(x2)
52395 Find the Reference Angle -135deg -135 degrees
52396 Find Amplitude, Period, and Phase Shift y=1/2cos((pix)/3-3/5) y=12cos(πx3-35)
52397 Find the Reference Angle cot((41pi)/6) cot(41π6)
52398 Solve for θ in Degrees csc(theta)^2-4=0 csc2(θ)-4=0
52399 Find the Cotangent of the Angle (5pi)/6 5π6
52400 Find the Cotangent Given the Point (-2 square root of 3,2) (-23,2)
using Amazon.Auth.AccessControlPolicy;
Mathway requires javascript and a modern browser.
 [x2  12  π  xdx ] 
AmazonPay