Enter a problem...
Trigonometry Examples
sec(3θ2)=-2sec(3θ2)=−2
Step 1
Take the inverse secant of both sides of the equation to extract θθ from inside the secant.
3θ2=arcsec(-2)3θ2=arcsec(−2)
Step 2
Step 2.1
The exact value of arcsec(-2)arcsec(−2) is 2π32π3.
3θ2=2π33θ2=2π3
3θ2=2π33θ2=2π3
Step 3
Multiply both sides of the equation by 2323.
23⋅3θ2=23⋅2π323⋅3θ2=23⋅2π3
Step 4
Step 4.1
Simplify the left side.
Step 4.1.1
Simplify 23⋅3θ223⋅3θ2.
Step 4.1.1.1
Cancel the common factor of 22.
Step 4.1.1.1.1
Cancel the common factor.
23⋅3θ2=23⋅2π3
Step 4.1.1.1.2
Rewrite the expression.
13(3θ)=23⋅2π3
13(3θ)=23⋅2π3
Step 4.1.1.2
Cancel the common factor of 3.
Step 4.1.1.2.1
Factor 3 out of 3θ.
13(3(θ))=23⋅2π3
Step 4.1.1.2.2
Cancel the common factor.
13(3θ)=23⋅2π3
Step 4.1.1.2.3
Rewrite the expression.
θ=23⋅2π3
θ=23⋅2π3
θ=23⋅2π3
θ=23⋅2π3
Step 4.2
Simplify the right side.
Step 4.2.1
Multiply 23⋅2π3.
Step 4.2.1.1
Multiply 23 by 2π3.
θ=2(2π)3⋅3
Step 4.2.1.2
Multiply 2 by 2.
θ=4π3⋅3
Step 4.2.1.3
Multiply 3 by 3.
θ=4π9
θ=4π9
θ=4π9
θ=4π9
Step 5
The secant function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the third quadrant.
3θ2=2π-2π3
Step 6
Step 6.1
Multiply both sides of the equation by 23.
23⋅3θ2=23(2π-2π3)
Step 6.2
Simplify both sides of the equation.
Step 6.2.1
Simplify the left side.
Step 6.2.1.1
Simplify 23⋅3θ2.
Step 6.2.1.1.1
Cancel the common factor of 2.
Step 6.2.1.1.1.1
Cancel the common factor.
23⋅3θ2=23(2π-2π3)
Step 6.2.1.1.1.2
Rewrite the expression.
13(3θ)=23(2π-2π3)
13(3θ)=23(2π-2π3)
Step 6.2.1.1.2
Cancel the common factor of 3.
Step 6.2.1.1.2.1
Factor 3 out of 3θ.
13(3(θ))=23(2π-2π3)
Step 6.2.1.1.2.2
Cancel the common factor.
13(3θ)=23(2π-2π3)
Step 6.2.1.1.2.3
Rewrite the expression.
θ=23(2π-2π3)
θ=23(2π-2π3)
θ=23(2π-2π3)
θ=23(2π-2π3)
Step 6.2.2
Simplify the right side.
Step 6.2.2.1
Simplify 23(2π-2π3).
Step 6.2.2.1.1
To write 2π as a fraction with a common denominator, multiply by 33.
θ=23(2π⋅33-2π3)
Step 6.2.2.1.2
Combine fractions.
Step 6.2.2.1.2.1
Combine 2π and 33.
θ=23(2π⋅33-2π3)
Step 6.2.2.1.2.2
Combine the numerators over the common denominator.
θ=23⋅2π⋅3-2π3
θ=23⋅2π⋅3-2π3
Step 6.2.2.1.3
Simplify the numerator.
Step 6.2.2.1.3.1
Multiply 3 by 2.
θ=23⋅6π-2π3
Step 6.2.2.1.3.2
Subtract 2π from 6π.
θ=23⋅4π3
θ=23⋅4π3
Step 6.2.2.1.4
Multiply 23⋅4π3.
Step 6.2.2.1.4.1
Multiply 23 by 4π3.
θ=2(4π)3⋅3
Step 6.2.2.1.4.2
Multiply 4 by 2.
θ=8π3⋅3
Step 6.2.2.1.4.3
Multiply 3 by 3.
θ=8π9
θ=8π9
θ=8π9
θ=8π9
θ=8π9
θ=8π9
Step 7
Step 7.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 7.2
Replace b with 32 in the formula for period.
2π|32|
Step 7.3
32 is approximately 1.5 which is positive so remove the absolute value
2π32
Step 7.4
Multiply the numerator by the reciprocal of the denominator.
2π23
Step 7.5
Multiply 2π23.
Step 7.5.1
Combine 23 and 2.
2⋅23π
Step 7.5.2
Multiply 2 by 2.
43π
Step 7.5.3
Combine 43 and π.
4π3
4π3
4π3
Step 8
The period of the sec(3θ2) function is 4π3 so values will repeat every 4π3 radians in both directions.
θ=4π9+4πn3,8π9+4πn3, for any integer n