Trigonometry Examples

Solve for θ in Radians sec((3theta)/2)=-2
sec(3θ2)=-2sec(3θ2)=2
Step 1
Take the inverse secant of both sides of the equation to extract θθ from inside the secant.
3θ2=arcsec(-2)3θ2=arcsec(2)
Step 2
Simplify the right side.
Tap for more steps...
Step 2.1
The exact value of arcsec(-2)arcsec(2) is 2π32π3.
3θ2=2π33θ2=2π3
3θ2=2π33θ2=2π3
Step 3
Multiply both sides of the equation by 2323.
233θ2=232π3233θ2=232π3
Step 4
Simplify both sides of the equation.
Tap for more steps...
Step 4.1
Simplify the left side.
Tap for more steps...
Step 4.1.1
Simplify 233θ2233θ2.
Tap for more steps...
Step 4.1.1.1
Cancel the common factor of 22.
Tap for more steps...
Step 4.1.1.1.1
Cancel the common factor.
233θ2=232π3
Step 4.1.1.1.2
Rewrite the expression.
13(3θ)=232π3
13(3θ)=232π3
Step 4.1.1.2
Cancel the common factor of 3.
Tap for more steps...
Step 4.1.1.2.1
Factor 3 out of 3θ.
13(3(θ))=232π3
Step 4.1.1.2.2
Cancel the common factor.
13(3θ)=232π3
Step 4.1.1.2.3
Rewrite the expression.
θ=232π3
θ=232π3
θ=232π3
θ=232π3
Step 4.2
Simplify the right side.
Tap for more steps...
Step 4.2.1
Multiply 232π3.
Tap for more steps...
Step 4.2.1.1
Multiply 23 by 2π3.
θ=2(2π)33
Step 4.2.1.2
Multiply 2 by 2.
θ=4π33
Step 4.2.1.3
Multiply 3 by 3.
θ=4π9
θ=4π9
θ=4π9
θ=4π9
Step 5
The secant function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 2π to find the solution in the third quadrant.
3θ2=2π-2π3
Step 6
Solve for θ.
Tap for more steps...
Step 6.1
Multiply both sides of the equation by 23.
233θ2=23(2π-2π3)
Step 6.2
Simplify both sides of the equation.
Tap for more steps...
Step 6.2.1
Simplify the left side.
Tap for more steps...
Step 6.2.1.1
Simplify 233θ2.
Tap for more steps...
Step 6.2.1.1.1
Cancel the common factor of 2.
Tap for more steps...
Step 6.2.1.1.1.1
Cancel the common factor.
233θ2=23(2π-2π3)
Step 6.2.1.1.1.2
Rewrite the expression.
13(3θ)=23(2π-2π3)
13(3θ)=23(2π-2π3)
Step 6.2.1.1.2
Cancel the common factor of 3.
Tap for more steps...
Step 6.2.1.1.2.1
Factor 3 out of 3θ.
13(3(θ))=23(2π-2π3)
Step 6.2.1.1.2.2
Cancel the common factor.
13(3θ)=23(2π-2π3)
Step 6.2.1.1.2.3
Rewrite the expression.
θ=23(2π-2π3)
θ=23(2π-2π3)
θ=23(2π-2π3)
θ=23(2π-2π3)
Step 6.2.2
Simplify the right side.
Tap for more steps...
Step 6.2.2.1
Simplify 23(2π-2π3).
Tap for more steps...
Step 6.2.2.1.1
To write 2π as a fraction with a common denominator, multiply by 33.
θ=23(2π33-2π3)
Step 6.2.2.1.2
Combine fractions.
Tap for more steps...
Step 6.2.2.1.2.1
Combine 2π and 33.
θ=23(2π33-2π3)
Step 6.2.2.1.2.2
Combine the numerators over the common denominator.
θ=232π3-2π3
θ=232π3-2π3
Step 6.2.2.1.3
Simplify the numerator.
Tap for more steps...
Step 6.2.2.1.3.1
Multiply 3 by 2.
θ=236π-2π3
Step 6.2.2.1.3.2
Subtract 2π from 6π.
θ=234π3
θ=234π3
Step 6.2.2.1.4
Multiply 234π3.
Tap for more steps...
Step 6.2.2.1.4.1
Multiply 23 by 4π3.
θ=2(4π)33
Step 6.2.2.1.4.2
Multiply 4 by 2.
θ=8π33
Step 6.2.2.1.4.3
Multiply 3 by 3.
θ=8π9
θ=8π9
θ=8π9
θ=8π9
θ=8π9
θ=8π9
Step 7
Find the period of sec(3θ2).
Tap for more steps...
Step 7.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 7.2
Replace b with 32 in the formula for period.
2π|32|
Step 7.3
32 is approximately 1.5 which is positive so remove the absolute value
2π32
Step 7.4
Multiply the numerator by the reciprocal of the denominator.
2π23
Step 7.5
Multiply 2π23.
Tap for more steps...
Step 7.5.1
Combine 23 and 2.
223π
Step 7.5.2
Multiply 2 by 2.
43π
Step 7.5.3
Combine 43 and π.
4π3
4π3
4π3
Step 8
The period of the sec(3θ2) function is 4π3 so values will repeat every 4π3 radians in both directions.
θ=4π9+4πn3,8π9+4πn3, for any integer n
 [x2  12  π  xdx ]