Trigonometry Examples

Expand Using Sum/Difference Formulas tan(15pi-2t)
tan(15π-2t)
Step 1
Use the difference formula for tangent to simplify the expression. The formula states that tan(A-B)=tan(A)-tan(B)1+tan(A)tan(B).
tan(15π)-tan(2t)1+tan(15π)tan(2t)
Step 2
Remove parentheses.
tan(15π)-tan(2t)1+tan(15π)tan(2t)
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Factor -1 out of tan(15π)-tan(2t).
Tap for more steps...
Step 3.1.1
Factor -1 out of tan(15π).
-1(-tan(15π))-tan(2t)1+tan(15π)tan(2t)
Step 3.1.2
Factor -1 out of -tan(2t).
-1(-tan(15π))-(tan(2t))1+tan(15π)tan(2t)
Step 3.1.3
Factor -1 out of -1(-tan(15π))-(tan(2t)).
-1(-tan(15π)+tan(2t))1+tan(15π)tan(2t)
Step 3.1.4
Rewrite -1(-tan(15π)+tan(2t)) as -(-tan(15π)+tan(2t)).
-(-tan(15π)+tan(2t))1+tan(15π)tan(2t)
-(-tan(15π)+tan(2t))1+tan(15π)tan(2t)
Step 3.2
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
-(-tan(π)+tan(2t))1+tan(15π)tan(2t)
Step 3.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-(--tan(0)+tan(2t))1+tan(15π)tan(2t)
Step 3.4
The exact value of tan(0) is 0.
-(--0+tan(2t))1+tan(15π)tan(2t)
Step 3.5
Multiply --0.
Tap for more steps...
Step 3.5.1
Multiply -1 by 0.
-(-0+tan(2t))1+tan(15π)tan(2t)
Step 3.5.2
Multiply -1 by 0.
-(0+tan(2t))1+tan(15π)tan(2t)
-(0+tan(2t))1+tan(15π)tan(2t)
Step 3.6
Add 0 and tan(2t).
-tan(2t)1+tan(15π)tan(2t)
-tan(2t)1+tan(15π)tan(2t)
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
-tan(2t)1+tan(π)tan(2t)
Step 4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(2t)1-tan(0)tan(2t)
Step 4.3
The exact value of tan(0) is 0.
-tan(2t)1-0tan(2t)
Step 4.4
Multiply -1 by 0.
-tan(2t)1+0tan(2t)
Step 4.5
Multiply 0 by tan(2t).
-tan(2t)1+0
Step 4.6
Add 1 and 0.
-tan(2t)1
-tan(2t)1
Step 5
Divide -tan(2t) by 1.
-tan(2t)
 [x2  12  π  xdx ]