Enter a problem...
Trigonometry Examples
cos(θ)⋅csc(θ)⋅tan(θ)=1cos(θ)⋅csc(θ)⋅tan(θ)=1
Step 1
Start on the left side.
cos(θ)⋅csc(θ)⋅tan(θ)cos(θ)⋅csc(θ)⋅tan(θ)
Step 2
Step 2.1
Apply the reciprocal identity to csc(θ)csc(θ).
cos(θ)⋅1sin(θ)⋅tan(θ)cos(θ)⋅1sin(θ)⋅tan(θ)
Step 2.2
Write tan(θ)tan(θ) in sines and cosines using the quotient identity.
cos(θ)⋅1sin(θ)⋅sin(θ)cos(θ)cos(θ)⋅1sin(θ)⋅sin(θ)cos(θ)
cos(θ)⋅1sin(θ)⋅sin(θ)cos(θ)cos(θ)⋅1sin(θ)⋅sin(θ)cos(θ)
Step 3
Step 3.1
Cancel the common factor of cos(θ)cos(θ).
Step 3.1.1
Factor cos(θ)cos(θ) out of cos(θ)⋅1sin(θ)cos(θ)⋅1sin(θ).
cos(θ)(1sin(θ))⋅sin(θ)cos(θ)cos(θ)(1sin(θ))⋅sin(θ)cos(θ)
Step 3.1.2
Cancel the common factor.
cos(θ)1sin(θ)⋅sin(θ)cos(θ)
Step 3.1.3
Rewrite the expression.
1sin(θ)⋅sin(θ)
1sin(θ)⋅sin(θ)
Step 3.2
Combine 1sin(θ) and sin(θ).
sin(θ)sin(θ)
Step 3.3
Cancel the common factor of sin(θ).
Step 3.3.1
Cancel the common factor.
sin(θ)sin(θ)
Step 3.3.2
Rewrite the expression.
1
1
1
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(θ)⋅csc(θ)⋅tan(θ)=1 is an identity