Trigonometry Examples

Verify the Identity cos(theta)*csc(theta)*tan(theta)=1
cos(θ)csc(θ)tan(θ)=1cos(θ)csc(θ)tan(θ)=1
Step 1
Start on the left side.
cos(θ)csc(θ)tan(θ)cos(θ)csc(θ)tan(θ)
Step 2
Convert to sines and cosines.
Tap for more steps...
Step 2.1
Apply the reciprocal identity to csc(θ)csc(θ).
cos(θ)1sin(θ)tan(θ)cos(θ)1sin(θ)tan(θ)
Step 2.2
Write tan(θ)tan(θ) in sines and cosines using the quotient identity.
cos(θ)1sin(θ)sin(θ)cos(θ)cos(θ)1sin(θ)sin(θ)cos(θ)
cos(θ)1sin(θ)sin(θ)cos(θ)cos(θ)1sin(θ)sin(θ)cos(θ)
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of cos(θ)cos(θ).
Tap for more steps...
Step 3.1.1
Factor cos(θ)cos(θ) out of cos(θ)1sin(θ)cos(θ)1sin(θ).
cos(θ)(1sin(θ))sin(θ)cos(θ)cos(θ)(1sin(θ))sin(θ)cos(θ)
Step 3.1.2
Cancel the common factor.
cos(θ)1sin(θ)sin(θ)cos(θ)
Step 3.1.3
Rewrite the expression.
1sin(θ)sin(θ)
1sin(θ)sin(θ)
Step 3.2
Combine 1sin(θ) and sin(θ).
sin(θ)sin(θ)
Step 3.3
Cancel the common factor of sin(θ).
Tap for more steps...
Step 3.3.1
Cancel the common factor.
sin(θ)sin(θ)
Step 3.3.2
Rewrite the expression.
1
1
1
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
cos(θ)csc(θ)tan(θ)=1 is an identity
 [x2  12  π  xdx ]