Enter a problem...
Trigonometry Examples
SideAngleb=5c=13a=A=B=C=
Step 1
Assume that angle C=90.
C=90
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for a.
a=√c2-b2
Step 2.3
Substitute the actual values into the equation.
a=√(13)2-(5)2
Step 2.4
Raise 13 to the power of 2.
a=√169-(5)2
Step 2.5
Raise 5 to the power of 2.
a=√169-1⋅25
Step 2.6
Multiply -1 by 25.
a=√169-25
Step 2.7
Subtract 25 from 169.
a=√144
Step 2.8
Rewrite 144 as 122.
a=√122
Step 2.9
Pull terms out from under the radical, assuming positive real numbers.
a=12
a=12
Step 3
Step 3.1
The angle B can be found using the inverse sine function.
B=arcsin(opphyp)
Step 3.2
Substitute in the values of the opposite side to angle B and hypotenuse 13 of the triangle.
B=arcsin(513)
Step 3.3
Evaluate arcsin(513).
B=22.61986494
B=22.61986494
Step 4
Step 4.1
The sum of all the angles in a triangle is 180 degrees.
A+90+22.61986494=180
Step 4.2
Solve the equation for A.
Step 4.2.1
Add 90 and 22.61986494.
A+112.61986494=180
Step 4.2.2
Move all terms not containing A to the right side of the equation.
Step 4.2.2.1
Subtract 112.61986494 from both sides of the equation.
A=180-112.61986494
Step 4.2.2.2
Subtract 112.61986494 from 180.
A=67.38013505
A=67.38013505
A=67.38013505
A=67.38013505
Step 5
These are the results for all angles and sides for the given triangle.
A=67.38013505
B=22.61986494
C=90
a=12
b=5
c=13