Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=2cot(1/3x+pi/6)+2
y=2cot(13x+π6)+2y=2cot(13x+π6)+2
Step 1
Use the form acot(bx-c)+dacot(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=2a=2
b=13b=13
c=-π6c=π6
d=2d=2
Step 2
Since the graph of the function cotcot does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 3
Find the period using the formula π|b|π|b|.
Tap for more steps...
Step 3.1
Find the period of 2cot(x3+π6)2cot(x3+π6).
Tap for more steps...
Step 3.1.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.1.2
Replace bb with 1313 in the formula for period.
π|13|π13
Step 3.1.3
1313 is approximately 0.30.¯3 which is positive so remove the absolute value
π13π13
Step 3.1.4
Multiply the numerator by the reciprocal of the denominator.
π3π3
Step 3.1.5
Move 33 to the left of ππ.
3π3π
3π3π
Step 3.2
Find the period of 22.
Tap for more steps...
Step 3.2.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.2.2
Replace bb with 1313 in the formula for period.
π|13|π13
Step 3.2.3
1313 is approximately 0.30.¯3 which is positive so remove the absolute value
π13π13
Step 3.2.4
Multiply the numerator by the reciprocal of the denominator.
π3π3
Step 3.2.5
Move 33 to the left of ππ.
3π3π
3π3π
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
3π3π
3π3π
Step 4
Find the phase shift using the formula cbcb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: -π613π613
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: -π63π63
Step 4.4
Cancel the common factor of 33.
Tap for more steps...
Step 4.4.1
Move the leading negative in -π6π6 into the numerator.
Phase Shift: -π63π63
Step 4.4.2
Factor 33 out of 66.
Phase Shift: -π3(2)3π3(2)3
Step 4.4.3
Cancel the common factor.
Phase Shift: -π323
Step 4.4.4
Rewrite the expression.
Phase Shift: -π2
Phase Shift: -π2
Step 4.5
Move the negative in front of the fraction.
Phase Shift: -π2
Phase Shift: -π2
Step 5
List the properties of the trigonometric function.
Amplitude: None
Period: 3π
Phase Shift: -π2 (π2 to the left)
Vertical Shift: 2
Step 6
 [x2  12  π  xdx ]