Enter a problem...
Trigonometry Examples
y=2cot(13x+π6)+2y=2cot(13x+π6)+2
Step 1
Use the form acot(bx-c)+dacot(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=2a=2
b=13b=13
c=-π6c=−π6
d=2d=2
Step 2
Since the graph of the function cotcot does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 3
Step 3.1
Find the period of 2cot(x3+π6)2cot(x3+π6).
Step 3.1.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.1.2
Replace bb with 1313 in the formula for period.
π|13|π∣∣13∣∣
Step 3.1.3
1313 is approximately 0.‾30.¯3 which is positive so remove the absolute value
π13π13
Step 3.1.4
Multiply the numerator by the reciprocal of the denominator.
π⋅3π⋅3
Step 3.1.5
Move 33 to the left of ππ.
3π3π
3π3π
Step 3.2
Find the period of 22.
Step 3.2.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.2.2
Replace bb with 1313 in the formula for period.
π|13|π∣∣13∣∣
Step 3.2.3
1313 is approximately 0.‾30.¯3 which is positive so remove the absolute value
π13π13
Step 3.2.4
Multiply the numerator by the reciprocal of the denominator.
π⋅3π⋅3
Step 3.2.5
Move 33 to the left of ππ.
3π3π
3π3π
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
3π3π
3π3π
Step 4
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: -π613−π613
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: -π6⋅3−π6⋅3
Step 4.4
Cancel the common factor of 33.
Step 4.4.1
Move the leading negative in -π6−π6 into the numerator.
Phase Shift: -π6⋅3−π6⋅3
Step 4.4.2
Factor 33 out of 66.
Phase Shift: -π3(2)⋅3−π3(2)⋅3
Step 4.4.3
Cancel the common factor.
Phase Shift: -π3⋅2⋅3
Step 4.4.4
Rewrite the expression.
Phase Shift: -π2
Phase Shift: -π2
Step 4.5
Move the negative in front of the fraction.
Phase Shift: -π2
Phase Shift: -π2
Step 5
List the properties of the trigonometric function.
Amplitude: None
Period: 3π
Phase Shift: -π2 (π2 to the left)
Vertical Shift: 2
Step 6