Enter a problem...
Trigonometry Examples
tan(θ)=-35tan(θ)=−35 , cos(θ)>0cos(θ)>0
Step 1
The cosine function is positive in the first and fourth quadrants. The tangent function is negative in the second and fourth quadrants. The set of solutions for θθ are limited to the fourth quadrant since that is the only quadrant found in both sets.
Solution is in the fourth quadrant.
Step 2
Use the definition of tangent to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
tan(θ)=oppositeadjacenttan(θ)=oppositeadjacent
Step 3
Find the hypotenuse of the unit circle triangle. Since the opposite and adjacent sides are known, use the Pythagorean theorem to find the remaining side.
Hypotenuse=√opposite2+adjacent2Hypotenuse=√opposite2+adjacent2
Step 4
Replace the known values in the equation.
Hypotenuse=√(-3)2+(5)2Hypotenuse=√(−3)2+(5)2
Step 5
Step 5.1
Raise -3−3 to the power of 22.
Hypotenuse =√9+(5)2=√9+(5)2
Step 5.2
Raise 55 to the power of 22.
Hypotenuse =√9+25=√9+25
Step 5.3
Add 99 and 2525.
Hypotenuse =√34=√34
Hypotenuse =√34=√34
Step 6
Step 6.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 6.2
Substitute in the known values.
sin(θ)=-3√34sin(θ)=−3√34
Step 6.3
Simplify the value of sin(θ)sin(θ).
Step 6.3.1
Move the negative in front of the fraction.
sin(θ)=-3√34sin(θ)=−3√34
Step 6.3.2
Multiply 3√343√34 by √34√34√34√34.
sin(θ)=-(3√34⋅√34√34)sin(θ)=−(3√34⋅√34√34)
Step 6.3.3
Combine and simplify the denominator.
Step 6.3.3.1
Multiply 3√343√34 by √34√34√34√34.
sin(θ)=-3√34√34√34sin(θ)=−3√34√34√34
Step 6.3.3.2
Raise √34√34 to the power of 11.
sin(θ)=-3√34√34√34sin(θ)=−3√34√34√34
Step 6.3.3.3
Raise √34√34 to the power of 11.
sin(θ)=-3√34√34√34sin(θ)=−3√34√34√34
Step 6.3.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(θ)=-3√34√341+1sin(θ)=−3√34√341+1
Step 6.3.3.5
Add 11 and 11.
sin(θ)=-3√34√342sin(θ)=−3√34√342
Step 6.3.3.6
Rewrite √342√342 as 3434.
Step 6.3.3.6.1
Use n√ax=axnn√ax=axn to rewrite √34√34 as 34123412.
sin(θ)=-3√34(3412)2sin(θ)=−3√34(3412)2
Step 6.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sin(θ)=-3√343412⋅2sin(θ)=−3√343412⋅2
Step 6.3.3.6.3
Combine 1212 and 22.
sin(θ)=-3√343422sin(θ)=−3√343422
Step 6.3.3.6.4
Cancel the common factor of 22.
Step 6.3.3.6.4.1
Cancel the common factor.
sin(θ)=-3√343422
Step 6.3.3.6.4.2
Rewrite the expression.
sin(θ)=-3√3434
sin(θ)=-3√3434
Step 6.3.3.6.5
Evaluate the exponent.
sin(θ)=-3√3434
sin(θ)=-3√3434
sin(θ)=-3√3434
sin(θ)=-3√3434
sin(θ)=-3√3434
Step 7
Step 7.1
Use the definition of cosine to find the value of cos(θ).
cos(θ)=adjhyp
Step 7.2
Substitute in the known values.
cos(θ)=5√34
Step 7.3
Simplify the value of cos(θ).
Step 7.3.1
Multiply 5√34 by √34√34.
cos(θ)=5√34⋅√34√34
Step 7.3.2
Combine and simplify the denominator.
Step 7.3.2.1
Multiply 5√34 by √34√34.
cos(θ)=5√34√34√34
Step 7.3.2.2
Raise √34 to the power of 1.
cos(θ)=5√34√34√34
Step 7.3.2.3
Raise √34 to the power of 1.
cos(θ)=5√34√34√34
Step 7.3.2.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=5√34√341+1
Step 7.3.2.5
Add 1 and 1.
cos(θ)=5√34√342
Step 7.3.2.6
Rewrite √342 as 34.
Step 7.3.2.6.1
Use n√ax=axn to rewrite √34 as 3412.
cos(θ)=5√34(3412)2
Step 7.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=5√343412⋅2
Step 7.3.2.6.3
Combine 12 and 2.
cos(θ)=5√343422
Step 7.3.2.6.4
Cancel the common factor of 2.
Step 7.3.2.6.4.1
Cancel the common factor.
cos(θ)=5√343422
Step 7.3.2.6.4.2
Rewrite the expression.
cos(θ)=5√3434
cos(θ)=5√3434
Step 7.3.2.6.5
Evaluate the exponent.
cos(θ)=5√3434
cos(θ)=5√3434
cos(θ)=5√3434
cos(θ)=5√3434
cos(θ)=5√3434
Step 8
Step 8.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=5-3
Step 8.3
Move the negative in front of the fraction.
cot(θ)=-53
cot(θ)=-53
Step 9
Step 9.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 9.2
Substitute in the known values.
sec(θ)=√345
sec(θ)=√345
Step 10
Step 10.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 10.2
Substitute in the known values.
csc(θ)=√34-3
Step 10.3
Move the negative in front of the fraction.
csc(θ)=-√343
csc(θ)=-√343
Step 11
This is the solution to each trig value.
sin(θ)=-3√3434
cos(θ)=5√3434
tan(θ)=-35
cot(θ)=-53
sec(θ)=√345
csc(θ)=-√343