Enter a problem...
Trigonometry Examples
sec(θ)=√3sec(θ)=√3
Step 1
Use the definition of secant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
sec(θ)=hypotenuseadjacent
Step 2
Find the opposite side of the unit circle triangle. Since the adjacent side and hypotenuse are known, use the Pythagorean theorem to find the remaining side.
Opposite=-√hypotenuse2-adjacent2
Step 3
Replace the known values in the equation.
Opposite=-√(√3)2-(1)2
Step 4
Step 4.1
Negate √(√3)2-(1)2.
Opposite =-√(√3)2-(1)2
Step 4.2
Rewrite √32 as 3.
Step 4.2.1
Use n√ax=axn to rewrite √3 as 312.
Opposite =-√(312)2-(1)2
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn.
Opposite =-√312⋅2-(1)2
Step 4.2.3
Combine 12 and 2.
Opposite =-√322-(1)2
Step 4.2.4
Cancel the common factor of 2.
Step 4.2.4.1
Cancel the common factor.
Opposite =-√322-(1)2
Step 4.2.4.2
Rewrite the expression.
Opposite =-√3-(1)2
Opposite =-√3-(1)2
Step 4.2.5
Evaluate the exponent.
Opposite =-√3-(1)2
Opposite =-√3-(1)2
Step 4.3
One to any power is one.
Opposite =-√3-1⋅1
Step 4.4
Multiply -1 by 1.
Opposite =-√3-1
Step 4.5
Subtract 1 from 3.
Opposite =-√2
Opposite =-√2
Step 5
Step 5.1
Use the definition of sine to find the value of sin(θ).
sin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=-√2√3
Step 5.3
Simplify the value of sin(θ).
Step 5.3.1
Move the negative in front of the fraction.
sin(θ)=-√2√3
Step 5.3.2
Multiply √2√3 by √3√3.
sin(θ)=-(√2√3⋅√3√3)
Step 5.3.3
Combine and simplify the denominator.
Step 5.3.3.1
Multiply √2√3 by √3√3.
sin(θ)=-√2√3√3√3
Step 5.3.3.2
Raise √3 to the power of 1.
sin(θ)=-√2√3√3√3
Step 5.3.3.3
Raise √3 to the power of 1.
sin(θ)=-√2√3√3√3
Step 5.3.3.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=-√2√3√31+1
Step 5.3.3.5
Add 1 and 1.
sin(θ)=-√2√3√32
Step 5.3.3.6
Rewrite √32 as 3.
Step 5.3.3.6.1
Use n√ax=axn to rewrite √3 as 312.
sin(θ)=-√2√3(312)2
Step 5.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=-√2√3312⋅2
Step 5.3.3.6.3
Combine 12 and 2.
sin(θ)=-√2√3322
Step 5.3.3.6.4
Cancel the common factor of 2.
Step 5.3.3.6.4.1
Cancel the common factor.
sin(θ)=-√2√3322
Step 5.3.3.6.4.2
Rewrite the expression.
sin(θ)=-√2√33
sin(θ)=-√2√33
Step 5.3.3.6.5
Evaluate the exponent.
sin(θ)=-√2√33
sin(θ)=-√2√33
sin(θ)=-√2√33
Step 5.3.4
Simplify the numerator.
Step 5.3.4.1
Combine using the product rule for radicals.
sin(θ)=-√2⋅33
Step 5.3.4.2
Multiply 2 by 3.
sin(θ)=-√63
sin(θ)=-√63
sin(θ)=-√63
sin(θ)=-√63
Step 6
Step 6.1
Use the definition of cosine to find the value of cos(θ).
cos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=1√3
Step 6.3
Simplify the value of cos(θ).
Step 6.3.1
Multiply 1√3 by √3√3.
cos(θ)=1√3⋅√3√3
Step 6.3.2
Combine and simplify the denominator.
Step 6.3.2.1
Multiply 1√3 by √3√3.
cos(θ)=√3√3√3
Step 6.3.2.2
Raise √3 to the power of 1.
cos(θ)=√3√3√3
Step 6.3.2.3
Raise √3 to the power of 1.
cos(θ)=√3√3√3
Step 6.3.2.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=√3√31+1
Step 6.3.2.5
Add 1 and 1.
cos(θ)=√3√32
Step 6.3.2.6
Rewrite √32 as 3.
Step 6.3.2.6.1
Use n√ax=axn to rewrite √3 as 312.
cos(θ)=√3(312)2
Step 6.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=√3312⋅2
Step 6.3.2.6.3
Combine 12 and 2.
cos(θ)=√3322
Step 6.3.2.6.4
Cancel the common factor of 2.
Step 6.3.2.6.4.1
Cancel the common factor.
cos(θ)=√3322
Step 6.3.2.6.4.2
Rewrite the expression.
cos(θ)=√33
cos(θ)=√33
Step 6.3.2.6.5
Evaluate the exponent.
cos(θ)=√33
cos(θ)=√33
cos(θ)=√33
cos(θ)=√33
cos(θ)=√33
Step 7
Step 7.1
Use the definition of tangent to find the value of tan(θ).
tan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=-√21
Step 7.3
Divide -√2 by 1.
tan(θ)=-√2
tan(θ)=-√2
Step 8
Step 8.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=1-√2
Step 8.3
Simplify the value of cot(θ).
Step 8.3.1
Cancel the common factor of 1 and -1.
Step 8.3.1.1
Rewrite 1 as -1(-1).
cot(θ)=-1⋅-1-√2
Step 8.3.1.2
Move the negative in front of the fraction.
cot(θ)=-1√2
cot(θ)=-1√2
Step 8.3.2
Multiply 1√2 by √2√2.
cot(θ)=-(1√2⋅√2√2)
Step 8.3.3
Combine and simplify the denominator.
Step 8.3.3.1
Multiply 1√2 by √2√2.
cot(θ)=-√2√2√2
Step 8.3.3.2
Raise √2 to the power of 1.
cot(θ)=-√2√2√2
Step 8.3.3.3
Raise √2 to the power of 1.
cot(θ)=-√2√2√2
Step 8.3.3.4
Use the power rule aman=am+n to combine exponents.
cot(θ)=-√2√21+1
Step 8.3.3.5
Add 1 and 1.
cot(θ)=-√2√22
Step 8.3.3.6
Rewrite √22 as 2.
Step 8.3.3.6.1
Use n√ax=axn to rewrite √2 as 212.
cot(θ)=-√2(212)2
Step 8.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cot(θ)=-√2212⋅2
Step 8.3.3.6.3
Combine 12 and 2.
cot(θ)=-√2222
Step 8.3.3.6.4
Cancel the common factor of 2.
Step 8.3.3.6.4.1
Cancel the common factor.
cot(θ)=-√2222
Step 8.3.3.6.4.2
Rewrite the expression.
cot(θ)=-√22
cot(θ)=-√22
Step 8.3.3.6.5
Evaluate the exponent.
cot(θ)=-√22
cot(θ)=-√22
cot(θ)=-√22
cot(θ)=-√22
cot(θ)=-√22
Step 9
Step 9.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 9.2
Substitute in the known values.
csc(θ)=√3-√2
Step 9.3
Simplify the value of csc(θ).
Step 9.3.1
Move the negative in front of the fraction.
csc(θ)=-√3√2
Step 9.3.2
Multiply √3√2 by √2√2.
csc(θ)=-(√3√2⋅√2√2)
Step 9.3.3
Combine and simplify the denominator.
Step 9.3.3.1
Multiply √3√2 by √2√2.
csc(θ)=-√3√2√2√2
Step 9.3.3.2
Raise √2 to the power of 1.
csc(θ)=-√3√2√2√2
Step 9.3.3.3
Raise √2 to the power of 1.
csc(θ)=-√3√2√2√2
Step 9.3.3.4
Use the power rule aman=am+n to combine exponents.
csc(θ)=-√3√2√21+1
Step 9.3.3.5
Add 1 and 1.
csc(θ)=-√3√2√22
Step 9.3.3.6
Rewrite √22 as 2.
Step 9.3.3.6.1
Use n√ax=axn to rewrite √2 as 212.
csc(θ)=-√3√2(212)2
Step 9.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
csc(θ)=-√3√2212⋅2
Step 9.3.3.6.3
Combine 12 and 2.
csc(θ)=-√3√2222
Step 9.3.3.6.4
Cancel the common factor of 2.
Step 9.3.3.6.4.1
Cancel the common factor.
csc(θ)=-√3√2222
Step 9.3.3.6.4.2
Rewrite the expression.
csc(θ)=-√3√22
csc(θ)=-√3√22
Step 9.3.3.6.5
Evaluate the exponent.
csc(θ)=-√3√22
csc(θ)=-√3√22
csc(θ)=-√3√22
Step 9.3.4
Simplify the numerator.
Step 9.3.4.1
Combine using the product rule for radicals.
csc(θ)=-√3⋅22
Step 9.3.4.2
Multiply 3 by 2.
csc(θ)=-√62
csc(θ)=-√62
csc(θ)=-√62
csc(θ)=-√62
Step 10
This is the solution to each trig value.
sin(θ)=-√63
cos(θ)=√33
tan(θ)=-√2
cot(θ)=-√22
sec(θ)=√3
csc(θ)=-√62