Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=-5tan(3x+pi)
y=-5tan(3x+π)y=5tan(3x+π)
Step 1
Use the form atan(bx-c)+datan(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=-5a=5
b=3b=3
c=-πc=π
d=0d=0
Step 2
Since the graph of the function tantan does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 3
Find the period of -5tan(3x+π)5tan(3x+π).
Tap for more steps...
Step 3.1
The period of the function can be calculated using π|b|π|b|.
π|b|π|b|
Step 3.2
Replace bb with 33 in the formula for period.
π|3|π|3|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 00 and 33 is 33.
π3π3
π3π3
Step 4
Find the phase shift using the formula cbcb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: -π3π3
Step 4.3
Move the negative in front of the fraction.
Phase Shift: -π3π3
Phase Shift: -π3π3
Step 5
List the properties of the trigonometric function.
Amplitude: None
Period: π3π3
Phase Shift: -π3π3 (π3π3 to the left)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]  x2  12  π  xdx