Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=4cos((6pix)/7-1/2)
y=4cos(6πx7-12)y=4cos(6πx712)
Step 1
Use the form acos(bx-c)+dacos(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=4a=4
b=6π7b=6π7
c=12c=12
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 44
Step 3
Find the period of 4cos(6πx7-12)4cos(6πx712).
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 6π76π7 in the formula for period.
2π|6π7|2π6π7
Step 3.3
6π76π7 is approximately 2.69279372.6927937 which is positive so remove the absolute value
2π6π72π6π7
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
2π76π2π76π
Step 3.5
Cancel the common factor of 2π2π.
Tap for more steps...
Step 3.5.1
Factor 2π2π out of 6π6π.
2π72π(3)2π72π(3)
Step 3.5.2
Cancel the common factor.
2π72π3
Step 3.5.3
Rewrite the expression.
73
73
73
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 126π7
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 1276π
Step 4.4
Multiply 1276π.
Tap for more steps...
Step 4.4.1
Multiply 12 by 76π.
Phase Shift: 72(6π)
Step 4.4.2
Multiply 6 by 2.
Phase Shift: 712π
Phase Shift: 712π
Phase Shift: 712π
Step 5
List the properties of the trigonometric function.
Amplitude: 4
Period: 73
Phase Shift: 712π (712π to the right)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]