Enter a problem...
Trigonometry Examples
y=4cos(6πx7-12)y=4cos(6πx7−12)
Step 1
Use the form acos(bx-c)+dacos(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=4a=4
b=6π7b=6π7
c=12c=12
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 44
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 6π76π7 in the formula for period.
2π|6π7|2π∣∣6π7∣∣
Step 3.3
6π76π7 is approximately 2.69279372.6927937 which is positive so remove the absolute value
2π6π72π6π7
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
2π76π2π76π
Step 3.5
Cancel the common factor of 2π2π.
Step 3.5.1
Factor 2π2π out of 6π6π.
2π72π(3)2π72π(3)
Step 3.5.2
Cancel the common factor.
2π72π⋅3
Step 3.5.3
Rewrite the expression.
73
73
73
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 126π7
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 12⋅76π
Step 4.4
Multiply 12⋅76π.
Step 4.4.1
Multiply 12 by 76π.
Phase Shift: 72(6π)
Step 4.4.2
Multiply 6 by 2.
Phase Shift: 712π
Phase Shift: 712π
Phase Shift: 712π
Step 5
List the properties of the trigonometric function.
Amplitude: 4
Period: 73
Phase Shift: 712π (712π to the right)
Vertical Shift: None
Step 6