Enter a problem...
Trigonometry Examples
5cos(A)+8=3cos(A)+65cos(A)+8=3cos(A)+6
Step 1
Step 1.1
Subtract 3cos(A)3cos(A) from both sides of the equation.
5cos(A)+8-3cos(A)=65cos(A)+8−3cos(A)=6
Step 1.2
Subtract 3cos(A)3cos(A) from 5cos(A)5cos(A).
2cos(A)+8=62cos(A)+8=6
2cos(A)+8=62cos(A)+8=6
Step 2
Step 2.1
Subtract 88 from both sides of the equation.
2cos(A)=6-82cos(A)=6−8
Step 2.2
Subtract 88 from 66.
2cos(A)=-22cos(A)=−2
2cos(A)=-22cos(A)=−2
Step 3
Step 3.1
Divide each term in 2cos(A)=-22cos(A)=−2 by 22.
2cos(A)2=-222cos(A)2=−22
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of 22.
Step 3.2.1.1
Cancel the common factor.
2cos(A)2=-22
Step 3.2.1.2
Divide cos(A) by 1.
cos(A)=-22
cos(A)=-22
cos(A)=-22
Step 3.3
Simplify the right side.
Step 3.3.1
Divide -2 by 2.
cos(A)=-1
cos(A)=-1
cos(A)=-1
Step 4
Take the inverse cosine of both sides of the equation to extract A from inside the cosine.
A=arccos(-1)
Step 5
Step 5.1
The exact value of arccos(-1) is 180.
A=180
A=180
Step 6
The cosine function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from 360 to find the solution in the third quadrant.
A=360-180
Step 7
Subtract 180 from 360.
A=180
Step 8
Step 8.1
The period of the function can be calculated using 360|b|.
360|b|
Step 8.2
Replace b with 1 in the formula for period.
360|1|
Step 8.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
3601
Step 8.4
Divide 360 by 1.
360
360
Step 9
The period of the cos(A) function is 360 so values will repeat every 360 degrees in both directions.
A=180+360n, for any integer n