Enter a problem...
Trigonometry Examples
6tan2(θ)-10tan(θ)+1=-5tan(θ)6tan2(θ)−10tan(θ)+1=−5tan(θ)
Step 1
Add 5tan(θ)5tan(θ) to both sides of the equation.
6tan2(θ)-10tan(θ)+1+5tan(θ)=06tan2(θ)−10tan(θ)+1+5tan(θ)=0
Step 2
Add -10tan(θ)−10tan(θ) and 5tan(θ)5tan(θ).
6tan2(θ)+1-5tan(θ)=06tan2(θ)+1−5tan(θ)=0
Step 3
Step 3.1
Reorder terms.
6tan2(θ)-5tan(θ)+1=06tan2(θ)−5tan(θ)+1=0
Step 3.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=6⋅1=6a⋅c=6⋅1=6 and whose sum is b=-5b=−5.
Step 3.2.1
Factor -5−5 out of -5tan(θ)−5tan(θ).
6tan2(θ)-5tan(θ)+1=06tan2(θ)−5tan(θ)+1=0
Step 3.2.2
Rewrite -5−5 as -2−2 plus -3−3
6tan2(θ)+(-2-3)tan(θ)+1=06tan2(θ)+(−2−3)tan(θ)+1=0
Step 3.2.3
Apply the distributive property.
6tan2(θ)-2tan(θ)-3tan(θ)+1=06tan2(θ)−2tan(θ)−3tan(θ)+1=0
6tan2(θ)-2tan(θ)-3tan(θ)+1=06tan2(θ)−2tan(θ)−3tan(θ)+1=0
Step 3.3
Factor out the greatest common factor from each group.
Step 3.3.1
Group the first two terms and the last two terms.
6tan2(θ)-2tan(θ)-3tan(θ)+1=06tan2(θ)−2tan(θ)−3tan(θ)+1=0
Step 3.3.2
Factor out the greatest common factor (GCF) from each group.
2tan(θ)(3tan(θ)-1)-(3tan(θ)-1)=02tan(θ)(3tan(θ)−1)−(3tan(θ)−1)=0
2tan(θ)(3tan(θ)-1)-(3tan(θ)-1)=02tan(θ)(3tan(θ)−1)−(3tan(θ)−1)=0
Step 3.4
Factor the polynomial by factoring out the greatest common factor, 3tan(θ)-13tan(θ)−1.
(3tan(θ)-1)(2tan(θ)-1)=0(3tan(θ)−1)(2tan(θ)−1)=0
(3tan(θ)-1)(2tan(θ)-1)=0(3tan(θ)−1)(2tan(θ)−1)=0
Step 4
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
3tan(θ)-1=03tan(θ)−1=0
2tan(θ)-1=02tan(θ)−1=0
Step 5
Step 5.1
Set 3tan(θ)-13tan(θ)−1 equal to 00.
3tan(θ)-1=03tan(θ)−1=0
Step 5.2
Solve 3tan(θ)-1=03tan(θ)−1=0 for θθ.
Step 5.2.1
Add 11 to both sides of the equation.
3tan(θ)=13tan(θ)=1
Step 5.2.2
Divide each term in 3tan(θ)=13tan(θ)=1 by 33 and simplify.
Step 5.2.2.1
Divide each term in 3tan(θ)=13tan(θ)=1 by 33.
3tan(θ)3=133tan(θ)3=13
Step 5.2.2.2
Simplify the left side.
Step 5.2.2.2.1
Cancel the common factor of 33.
Step 5.2.2.2.1.1
Cancel the common factor.
3tan(θ)3=133tan(θ)3=13
Step 5.2.2.2.1.2
Divide tan(θ)tan(θ) by 11.
tan(θ)=13tan(θ)=13
tan(θ)=13tan(θ)=13
tan(θ)=13tan(θ)=13
tan(θ)=13tan(θ)=13
Step 5.2.3
Take the inverse tangent of both sides of the equation to extract θθ from inside the tangent.
θ=arctan(13)θ=arctan(13)
Step 5.2.4
Simplify the right side.
Step 5.2.4.1
Evaluate arctan(13)arctan(13).
θ=18.43494882θ=18.43494882
θ=18.43494882θ=18.43494882
Step 5.2.5
The tangent function is positive in the first and third quadrants. To find the second solution, subtract the reference angle from 180180 to find the solution in the fourth quadrant.
θ=180+18.43494882θ=180+18.43494882
Step 5.2.6
Add 180180 and 18.4349488218.43494882.
θ=198.43494882θ=198.43494882
Step 5.2.7
Find the period of tan(θ)tan(θ).
Step 5.2.7.1
The period of the function can be calculated using 180|b|180|b|.
180|b|180|b|
Step 5.2.7.2
Replace bb with 11 in the formula for period.
180|1|180|1|
Step 5.2.7.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
18011801
Step 5.2.7.4
Divide 180180 by 11.
180180
180180
Step 5.2.8
The period of the tan(θ)tan(θ) function is 180180 so values will repeat every 180180 degrees in both directions.
θ=18.43494882+180n,198.43494882+180nθ=18.43494882+180n,198.43494882+180n, for any integer nn
θ=18.43494882+180n,198.43494882+180nθ=18.43494882+180n,198.43494882+180n, for any integer nn
θ=18.43494882+180n,198.43494882+180nθ=18.43494882+180n,198.43494882+180n, for any integer nn
Step 6
Step 6.1
Set 2tan(θ)-12tan(θ)−1 equal to 00.
2tan(θ)-1=02tan(θ)−1=0
Step 6.2
Solve 2tan(θ)-1=02tan(θ)−1=0 for θθ.
Step 6.2.1
Add 11 to both sides of the equation.
2tan(θ)=12tan(θ)=1
Step 6.2.2
Divide each term in 2tan(θ)=12tan(θ)=1 by 22 and simplify.
Step 6.2.2.1
Divide each term in 2tan(θ)=12tan(θ)=1 by 22.
2tan(θ)2=122tan(θ)2=12
Step 6.2.2.2
Simplify the left side.
Step 6.2.2.2.1
Cancel the common factor of 22.
Step 6.2.2.2.1.1
Cancel the common factor.
2tan(θ)2=122tan(θ)2=12
Step 6.2.2.2.1.2
Divide tan(θ)tan(θ) by 11.
tan(θ)=12tan(θ)=12
tan(θ)=12tan(θ)=12
tan(θ)=12tan(θ)=12
tan(θ)=12tan(θ)=12
Step 6.2.3
Take the inverse tangent of both sides of the equation to extract θθ from inside the tangent.
θ=arctan(12)θ=arctan(12)
Step 6.2.4
Simplify the right side.
Step 6.2.4.1
Evaluate arctan(12)arctan(12).
θ=26.56505117θ=26.56505117
θ=26.56505117θ=26.56505117
Step 6.2.5
The tangent function is positive in the first and third quadrants. To find the second solution, subtract the reference angle from 180180 to find the solution in the fourth quadrant.
θ=180+26.56505117θ=180+26.56505117
Step 6.2.6
Add 180180 and 26.5650511726.56505117.
θ=206.56505117θ=206.56505117
Step 6.2.7
Find the period of tan(θ)tan(θ).
Step 6.2.7.1
The period of the function can be calculated using 180|b|180|b|.
180|b|180|b|
Step 6.2.7.2
Replace bb with 11 in the formula for period.
180|1|180|1|
Step 6.2.7.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
18011801
Step 6.2.7.4
Divide 180180 by 11.
180180
180180
Step 6.2.8
The period of the tan(θ)tan(θ) function is 180180 so values will repeat every 180180 degrees in both directions.
θ=26.56505117+180n,206.56505117+180nθ=26.56505117+180n,206.56505117+180n, for any integer nn
θ=26.56505117+180n,206.56505117+180nθ=26.56505117+180n,206.56505117+180n, for any integer nn
θ=26.56505117+180n,206.56505117+180nθ=26.56505117+180n,206.56505117+180n, for any integer nn
Step 7
The final solution is all the values that make (3tan(θ)-1)(2tan(θ)-1)=0(3tan(θ)−1)(2tan(θ)−1)=0 true.
θ=18.43494882+180n,198.43494882+180n,26.56505117+180n,206.56505117+180nθ=18.43494882+180n,198.43494882+180n,26.56505117+180n,206.56505117+180n, for any integer nn
Step 8
Step 8.1
Consolidate 18.43494882+180n18.43494882+180n and 198.43494882+180n198.43494882+180n to 18.43494882+180n18.43494882+180n.
θ=18.43494882+180n,26.56505117+180n,206.56505117+180nθ=18.43494882+180n,26.56505117+180n,206.56505117+180n, for any integer nn
Step 8.2
Consolidate 26.56505117+180n26.56505117+180n and 206.56505117+180n206.56505117+180n to 26.56505117+180n26.56505117+180n.
θ=18.43494882+180n,26.56505117+180nθ=18.43494882+180n,26.56505117+180n, for any integer nn
θ=18.43494882+180n,26.56505117+180nθ=18.43494882+180n,26.56505117+180n, for any integer nn