Trigonometry Examples

Solve for x in Radians 2sin(pi/3x) = square root of 2
2sin(π3x)=22sin(π3x)=2
Step 1
Divide each term in 2sin(π3x)=22sin(π3x)=2 by 22 and simplify.
Tap for more steps...
Step 1.1
Divide each term in 2sin(π3x)=22sin(π3x)=2 by 22.
2sin(π3x)2=222sin(π3x)2=22
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 1.2.1.1
Cancel the common factor.
2sin(π3x)2=222sin(π3x)2=22
Step 1.2.1.2
Divide sin(π3x)sin(π3x) by 11.
sin(π3x)=22sin(π3x)=22
sin(π3x)=22sin(π3x)=22
sin(π3x)=22sin(π3x)=22
sin(π3x)=22sin(π3x)=22
Step 2
Take the inverse sine of both sides of the equation to extract xx from inside the sine.
π3x=arcsin(22)π3x=arcsin(22)
Step 3
Simplify the left side.
Tap for more steps...
Step 3.1
Combine π3π3 and xx.
πx3=arcsin(22)πx3=arcsin(22)
πx3=arcsin(22)πx3=arcsin(22)
Step 4
Simplify the right side.
Tap for more steps...
Step 4.1
The exact value of arcsin(22)arcsin(22) is π4π4.
πx3=π4πx3=π4
πx3=π4πx3=π4
Step 5
Multiply both sides of the equation by 3π3π.
3ππx3=3ππ43ππx3=3ππ4
Step 6
Simplify both sides of the equation.
Tap for more steps...
Step 6.1
Simplify the left side.
Tap for more steps...
Step 6.1.1
Simplify 3ππx33ππx3.
Tap for more steps...
Step 6.1.1.1
Cancel the common factor of 33.
Tap for more steps...
Step 6.1.1.1.1
Cancel the common factor.
3ππx3=3ππ43ππx3=3ππ4
Step 6.1.1.1.2
Rewrite the expression.
1π(πx)=3ππ41π(πx)=3ππ4
1π(πx)=3ππ41π(πx)=3ππ4
Step 6.1.1.2
Cancel the common factor of ππ.
Tap for more steps...
Step 6.1.1.2.1
Factor ππ out of πxπx.
1π(π(x))=3ππ41π(π(x))=3ππ4
Step 6.1.1.2.2
Cancel the common factor.
1π(πx)=3ππ41π(πx)=3ππ4
Step 6.1.1.2.3
Rewrite the expression.
x=3ππ4x=3ππ4
x=3ππ4x=3ππ4
x=3ππ4x=3ππ4
x=3ππ4x=3ππ4
Step 6.2
Simplify the right side.
Tap for more steps...
Step 6.2.1
Simplify 3ππ43ππ4.
Tap for more steps...
Step 6.2.1.1
Cancel the common factor of ππ.
Tap for more steps...
Step 6.2.1.1.1
Cancel the common factor.
x=3ππ4x=3ππ4
Step 6.2.1.1.2
Rewrite the expression.
x=3(14)x=3(14)
x=3(14)x=3(14)
Step 6.2.1.2
Combine 33 and 1414.
x=34x=34
x=34x=34
x=34x=34
x=34x=34
Step 7
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from ππ to find the solution in the second quadrant.
πx3=π-π4πx3=ππ4
Step 8
Solve for xx.
Tap for more steps...
Step 8.1
Multiply both sides of the equation by 3π3π.
3ππx3=3π(π-π4)3ππx3=3π(ππ4)
Step 8.2
Simplify both sides of the equation.
Tap for more steps...
Step 8.2.1
Simplify the left side.
Tap for more steps...
Step 8.2.1.1
Simplify 3ππx33ππx3.
Tap for more steps...
Step 8.2.1.1.1
Cancel the common factor of 33.
Tap for more steps...
Step 8.2.1.1.1.1
Cancel the common factor.
3ππx3=3π(π-π4)3ππx3=3π(ππ4)
Step 8.2.1.1.1.2
Rewrite the expression.
1π(πx)=3π(π-π4)1π(πx)=3π(ππ4)
1π(πx)=3π(π-π4)1π(πx)=3π(ππ4)
Step 8.2.1.1.2
Cancel the common factor of ππ.
Tap for more steps...
Step 8.2.1.1.2.1
Factor ππ out of πxπx.
1π(π(x))=3π(π-π4)1π(π(x))=3π(ππ4)
Step 8.2.1.1.2.2
Cancel the common factor.
1π(πx)=3π(π-π4)1π(πx)=3π(ππ4)
Step 8.2.1.1.2.3
Rewrite the expression.
x=3π(π-π4)x=3π(ππ4)
x=3π(π-π4)x=3π(ππ4)
x=3π(π-π4)x=3π(ππ4)
x=3π(π-π4)x=3π(ππ4)
Step 8.2.2
Simplify the right side.
Tap for more steps...
Step 8.2.2.1
Simplify 3π(π-π4)3π(ππ4).
Tap for more steps...
Step 8.2.2.1.1
To write ππ as a fraction with a common denominator, multiply by 4444.
x=3π(π44-π4)x=3π(π44π4)
Step 8.2.2.1.2
Combine fractions.
Tap for more steps...
Step 8.2.2.1.2.1
Combine ππ and 4444.
x=3π(π44-π4)x=3π(π44π4)
Step 8.2.2.1.2.2
Combine the numerators over the common denominator.
x=3ππ4-π4x=3ππ4π4
x=3ππ4-π4x=3ππ4π4
Step 8.2.2.1.3
Simplify the numerator.
Tap for more steps...
Step 8.2.2.1.3.1
Move 44 to the left of ππ.
x=3π4π-π4x=3π4ππ4
Step 8.2.2.1.3.2
Subtract ππ from 4π4π.
x=3π3π4x=3π3π4
x=3π3π4x=3π3π4
Step 8.2.2.1.4
Simplify terms.
Tap for more steps...
Step 8.2.2.1.4.1
Cancel the common factor of ππ.
Tap for more steps...
Step 8.2.2.1.4.1.1
Factor ππ out of 3π3π.
x=3ππ34x=3ππ34
Step 8.2.2.1.4.1.2
Cancel the common factor.
x=3ππ34x=3ππ34
Step 8.2.2.1.4.1.3
Rewrite the expression.
x=3(34)x=3(34)
x=3(34)x=3(34)
Step 8.2.2.1.4.2
Combine 33 and 3434.
x=334x=334
Step 8.2.2.1.4.3
Multiply 33 by 33.
x=94x=94
x=94x=94
x=94x=94
x=94x=94
x=94x=94
x=94x=94
Step 9
Find the period of sin(π3x)sin(π3x).
Tap for more steps...
Step 9.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 9.2
Replace b with π3 in the formula for period.
2π|π3|
Step 9.3
π3 is approximately 1.04719755 which is positive so remove the absolute value
2ππ3
Step 9.4
Multiply the numerator by the reciprocal of the denominator.
2π3π
Step 9.5
Cancel the common factor of π.
Tap for more steps...
Step 9.5.1
Factor π out of 2π.
π23π
Step 9.5.2
Cancel the common factor.
π23π
Step 9.5.3
Rewrite the expression.
23
23
Step 9.6
Multiply 2 by 3.
6
6
Step 10
The period of the sin(π3x) function is 6 so values will repeat every 6 radians in both directions.
x=34+6n,94+6n, for any integer n
 [x2  12  π  xdx ]