Enter a problem...
Trigonometry Examples
2sin(π3x)=√22sin(π3x)=√2
Step 1
Step 1.1
Divide each term in 2sin(π3x)=√22sin(π3x)=√2 by 22.
2sin(π3x)2=√222sin(π3x)2=√22
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of 22.
Step 1.2.1.1
Cancel the common factor.
2sin(π3x)2=√222sin(π3x)2=√22
Step 1.2.1.2
Divide sin(π3x)sin(π3x) by 11.
sin(π3x)=√22sin(π3x)=√22
sin(π3x)=√22sin(π3x)=√22
sin(π3x)=√22sin(π3x)=√22
sin(π3x)=√22sin(π3x)=√22
Step 2
Take the inverse sine of both sides of the equation to extract xx from inside the sine.
π3x=arcsin(√22)π3x=arcsin(√22)
Step 3
Step 3.1
Combine π3π3 and xx.
πx3=arcsin(√22)πx3=arcsin(√22)
πx3=arcsin(√22)πx3=arcsin(√22)
Step 4
Step 4.1
The exact value of arcsin(√22)arcsin(√22) is π4π4.
πx3=π4πx3=π4
πx3=π4πx3=π4
Step 5
Multiply both sides of the equation by 3π3π.
3π⋅πx3=3π⋅π43π⋅πx3=3π⋅π4
Step 6
Step 6.1
Simplify the left side.
Step 6.1.1
Simplify 3π⋅πx33π⋅πx3.
Step 6.1.1.1
Cancel the common factor of 33.
Step 6.1.1.1.1
Cancel the common factor.
3π⋅πx3=3π⋅π43π⋅πx3=3π⋅π4
Step 6.1.1.1.2
Rewrite the expression.
1π(πx)=3π⋅π41π(πx)=3π⋅π4
1π(πx)=3π⋅π41π(πx)=3π⋅π4
Step 6.1.1.2
Cancel the common factor of ππ.
Step 6.1.1.2.1
Factor ππ out of πxπx.
1π(π(x))=3π⋅π41π(π(x))=3π⋅π4
Step 6.1.1.2.2
Cancel the common factor.
1π(πx)=3π⋅π41π(πx)=3π⋅π4
Step 6.1.1.2.3
Rewrite the expression.
x=3π⋅π4x=3π⋅π4
x=3π⋅π4x=3π⋅π4
x=3π⋅π4x=3π⋅π4
x=3π⋅π4x=3π⋅π4
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify 3π⋅π43π⋅π4.
Step 6.2.1.1
Cancel the common factor of ππ.
Step 6.2.1.1.1
Cancel the common factor.
x=3π⋅π4x=3π⋅π4
Step 6.2.1.1.2
Rewrite the expression.
x=3(14)x=3(14)
x=3(14)x=3(14)
Step 6.2.1.2
Combine 33 and 1414.
x=34x=34
x=34x=34
x=34x=34
x=34x=34
Step 7
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from ππ to find the solution in the second quadrant.
πx3=π-π4πx3=π−π4
Step 8
Step 8.1
Multiply both sides of the equation by 3π3π.
3π⋅πx3=3π(π-π4)3π⋅πx3=3π(π−π4)
Step 8.2
Simplify both sides of the equation.
Step 8.2.1
Simplify the left side.
Step 8.2.1.1
Simplify 3π⋅πx33π⋅πx3.
Step 8.2.1.1.1
Cancel the common factor of 33.
Step 8.2.1.1.1.1
Cancel the common factor.
3π⋅πx3=3π(π-π4)3π⋅πx3=3π(π−π4)
Step 8.2.1.1.1.2
Rewrite the expression.
1π(πx)=3π(π-π4)1π(πx)=3π(π−π4)
1π(πx)=3π(π-π4)1π(πx)=3π(π−π4)
Step 8.2.1.1.2
Cancel the common factor of ππ.
Step 8.2.1.1.2.1
Factor ππ out of πxπx.
1π(π(x))=3π(π-π4)1π(π(x))=3π(π−π4)
Step 8.2.1.1.2.2
Cancel the common factor.
1π(πx)=3π(π-π4)1π(πx)=3π(π−π4)
Step 8.2.1.1.2.3
Rewrite the expression.
x=3π(π-π4)x=3π(π−π4)
x=3π(π-π4)x=3π(π−π4)
x=3π(π-π4)x=3π(π−π4)
x=3π(π-π4)x=3π(π−π4)
Step 8.2.2
Simplify the right side.
Step 8.2.2.1
Simplify 3π(π-π4)3π(π−π4).
Step 8.2.2.1.1
To write ππ as a fraction with a common denominator, multiply by 4444.
x=3π(π⋅44-π4)x=3π(π⋅44−π4)
Step 8.2.2.1.2
Combine fractions.
Step 8.2.2.1.2.1
Combine ππ and 4444.
x=3π(π⋅44-π4)x=3π(π⋅44−π4)
Step 8.2.2.1.2.2
Combine the numerators over the common denominator.
x=3π⋅π⋅4-π4x=3π⋅π⋅4−π4
x=3π⋅π⋅4-π4x=3π⋅π⋅4−π4
Step 8.2.2.1.3
Simplify the numerator.
Step 8.2.2.1.3.1
Move 44 to the left of ππ.
x=3π⋅4⋅π-π4x=3π⋅4⋅π−π4
Step 8.2.2.1.3.2
Subtract ππ from 4π4π.
x=3π⋅3π4x=3π⋅3π4
x=3π⋅3π4x=3π⋅3π4
Step 8.2.2.1.4
Simplify terms.
Step 8.2.2.1.4.1
Cancel the common factor of ππ.
Step 8.2.2.1.4.1.1
Factor ππ out of 3π3π.
x=3π⋅π⋅34x=3π⋅π⋅34
Step 8.2.2.1.4.1.2
Cancel the common factor.
x=3π⋅π⋅34x=3π⋅π⋅34
Step 8.2.2.1.4.1.3
Rewrite the expression.
x=3(34)x=3(34)
x=3(34)x=3(34)
Step 8.2.2.1.4.2
Combine 33 and 3434.
x=3⋅34x=3⋅34
Step 8.2.2.1.4.3
Multiply 33 by 33.
x=94x=94
x=94x=94
x=94x=94
x=94x=94
x=94x=94
x=94x=94
Step 9
Step 9.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 9.2
Replace b with π3 in the formula for period.
2π|π3|
Step 9.3
π3 is approximately 1.04719755 which is positive so remove the absolute value
2ππ3
Step 9.4
Multiply the numerator by the reciprocal of the denominator.
2π3π
Step 9.5
Cancel the common factor of π.
Step 9.5.1
Factor π out of 2π.
π⋅23π
Step 9.5.2
Cancel the common factor.
π⋅23π
Step 9.5.3
Rewrite the expression.
2⋅3
2⋅3
Step 9.6
Multiply 2 by 3.
6
6
Step 10
The period of the sin(π3x) function is 6 so values will repeat every 6 radians in both directions.
x=34+6n,94+6n, for any integer n