Enter a problem...
Trigonometry Examples
y=4cos(3πx+25)y=4cos(3πx+25)
Step 1
Use the form acos(bx-c)+dacos(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=4a=4
b=3πb=3π
c=-25c=−25
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 44
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 3π3π in the formula for period.
2π|3π|2π|3π|
Step 3.3
3π3π is approximately 9.424777969.42477796 which is positive so remove the absolute value
2π3π2π3π
Step 3.4
Cancel the common factor of ππ.
Step 3.4.1
Cancel the common factor.
2π3π
Step 3.4.2
Rewrite the expression.
23
23
23
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: -253π
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: -25⋅13π
Step 4.4
Multiply -25⋅13π.
Step 4.4.1
Multiply 13π by 25.
Phase Shift: -23π⋅5
Step 4.4.2
Multiply 5 by 3.
Phase Shift: -215π
Phase Shift: -215π
Phase Shift: -215π
Step 5
List the properties of the trigonometric function.
Amplitude: 4
Period: 23
Phase Shift: -215π (215π to the left)
Vertical Shift: None
Step 6