Enter a problem...
Trigonometry Examples
(-27,3√57)(−27,3√57)
Step 1
To find the sec(θ)sec(θ) between the x-axis and the line between the points (0,0)(0,0) and (-27,3√57)(−27,3√57), draw the triangle between the three points (0,0)(0,0), (-27,0)(−27,0), and (-27,3√57)(−27,3√57).
Opposite : 3√573√57
Adjacent : -27−27
Step 2
Step 2.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.1.1
Apply the product rule to -27−27.
√(-1)2(27)2+(3√57)2
⎷(−1)2(27)2+(3√57)2
Step 2.1.2
Apply the product rule to 2727.
√(-1)22272+(3√57)2
⎷(−1)22272+(3√57)2
√(-1)22272+(3√57)2
⎷(−1)22272+(3√57)2
Step 2.2
Raise -1−1 to the power of 22.
√12272+(3√57)2
⎷12272+(3√57)2
Step 2.3
Multiply 22722272 by 11.
√2272+(3√57)2
⎷2272+(3√57)2
Step 2.4
Raise 22 to the power of 22.
√472+(3√57)2
⎷472+(3√57)2
Step 2.5
Raise 77 to the power of 22.
√449+(3√57)2
⎷449+(3√57)2
Step 2.6
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.6.1
Apply the product rule to 3√573√57.
√449+(3√5)272
⎷449+(3√5)272
Step 2.6.2
Apply the product rule to 3√53√5.
√449+32√5272√449+32√5272
√449+32√5272√449+32√5272
Step 2.7
Simplify the numerator.
Step 2.7.1
Raise 33 to the power of 22.
√449+9√5272√449+9√5272
Step 2.7.2
Rewrite √52√52 as 55.
Step 2.7.2.1
Use n√ax=axnn√ax=axn to rewrite √5√5 as 512512.
√449+9(512)272
⎷449+9(512)272
Step 2.7.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√449+9⋅512⋅272√449+9⋅512⋅272
Step 2.7.2.3
Combine 1212 and 22.
√449+9⋅52272√449+9⋅52272
Step 2.7.2.4
Cancel the common factor of 22.
Step 2.7.2.4.1
Cancel the common factor.
√449+9⋅52272
Step 2.7.2.4.2
Rewrite the expression.
√449+9⋅5172
√449+9⋅5172
Step 2.7.2.5
Evaluate the exponent.
√449+9⋅572
√449+9⋅572
√449+9⋅572
Step 2.8
Simplify the expression.
Step 2.8.1
Raise 7 to the power of 2.
√449+9⋅549
Step 2.8.2
Multiply 9 by 5.
√449+4549
Step 2.8.3
Combine the numerators over the common denominator.
√4+4549
Step 2.8.4
Add 4 and 45.
√4949
Step 2.8.5
Divide 49 by 49.
√1
Step 2.8.6
Any root of 1 is 1.
1
1
1
Step 3
sec(θ)=HypotenuseAdjacent therefore sec(θ)=1-27.
1-27
Step 4
Step 4.1
Cancel the common factor of 1 and -1.
Step 4.1.1
Rewrite 1 as -1(-1).
sec(θ)=-1⋅-1-27
Step 4.1.2
Move the negative in front of the fraction.
sec(θ)=-127
sec(θ)=-127
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
sec(θ)=-(1(72))
Step 4.3
Multiply 72 by 1.
sec(θ)=-72
sec(θ)=-72
Step 5
Approximate the result.
sec(θ)=-72≈-3.5