Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=sin(3x+2pi)
y=sin(3x+2π)
Step 1
Use the form asin(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1
b=3
c=-2π
d=0
Step 2
Find the amplitude |a|.
Amplitude: 1
Step 3
Find the period of sin(3x+2π).
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 3 in the formula for period.
2π|3|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 0 and 3 is 3.
2π3
2π3
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: -2π3
Step 4.3
Move the negative in front of the fraction.
Phase Shift: -2π3
Phase Shift: -2π3
Step 5
List the properties of the trigonometric function.
Amplitude: 1
Period: 2π3
Phase Shift: -2π3 (2π3 to the left)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]