Trigonometry Examples

Verify the Identity sin(A+B)=cos(pi/2-(A+B))
sin(A+B)=cos(π2-(A+B))
Step 1
Start on the right side.
cos(π2-(A+B))
Step 2
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y).
cos(π2)cos(A+B)+sin(π2)sin(A+B)
Step 3
Simplify the expression.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
The exact value of cos(π2) is 0.
0cos(A+B)+sin(π2)sin(A+B)
Step 3.1.2
Multiply 0 by cos(A+B).
0+sin(π2)sin(A+B)
Step 3.1.3
The exact value of sin(π2) is 1.
0+1sin(A+B)
Step 3.1.4
Multiply sin(A+B) by 1.
0+sin(A+B)
0+sin(A+B)
Step 3.2
Add 0 and sin(A+B).
sin(A+B)
sin(A+B)
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
sin(A+B)=cos(π2-(A+B)) is an identity
 [x2  12  π  xdx ]