Enter a problem...
Trigonometry Examples
arctan(-1√3)arctan(−1√3)
Step 1
To convert radians to degrees, multiply by 180π180π, since a full circle is 360°360° or 2π2π radians.
(arctan(-1√3))⋅180°π(arctan(−1√3))⋅180°π
Step 2
Multiply 1√31√3 by √3√3√3√3.
arctan(-(1√3⋅√3√3))⋅180πarctan(−(1√3⋅√3√3))⋅180π
Step 3
Step 3.1
Multiply 1√31√3 by √3√3√3√3.
arctan(-√3√3√3)⋅180πarctan(−√3√3√3)⋅180π
Step 3.2
Raise √3√3 to the power of 11.
arctan(-√3√31√3)⋅180πarctan(−√3√31√3)⋅180π
Step 3.3
Raise √3√3 to the power of 11.
arctan(-√3√31√31)⋅180πarctan(−√3√31√31)⋅180π
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
arctan(-√3√31+1)⋅180πarctan(−√3√31+1)⋅180π
Step 3.5
Add 11 and 11.
arctan(-√3√32)⋅180πarctan(−√3√32)⋅180π
Step 3.6
Rewrite √32√32 as 33.
Step 3.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
arctan(-√3(312)2)⋅180πarctan⎛⎜
⎜⎝−√3(312)2⎞⎟
⎟⎠⋅180π
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
arctan(-√3312⋅2)⋅180πarctan(−√3312⋅2)⋅180π
Step 3.6.3
Combine 1212 and 22.
arctan(-√3322)⋅180πarctan(−√3322)⋅180π
Step 3.6.4
Cancel the common factor of 22.
Step 3.6.4.1
Cancel the common factor.
arctan(-√3322)⋅180π
Step 3.6.4.2
Rewrite the expression.
arctan(-√331)⋅180π
arctan(-√331)⋅180π
Step 3.6.5
Evaluate the exponent.
arctan(-√33)⋅180π
arctan(-√33)⋅180π
arctan(-√33)⋅180π
Step 4
The exact value of arctan(-√33) is -π6.
-π6⋅180π
Step 5
Step 5.1
Move the leading negative in -π6 into the numerator.
-π6⋅180π
Step 5.2
Factor π out of -π.
π⋅-16⋅180π
Step 5.3
Cancel the common factor.
π⋅-16⋅180π
Step 5.4
Rewrite the expression.
-16⋅180
-16⋅180
Step 6
Step 6.1
Factor 6 out of 180.
-16⋅(6(30))
Step 6.2
Cancel the common factor.
-16⋅(6⋅30)
Step 6.3
Rewrite the expression.
-1⋅30
-1⋅30
Step 7
Multiply -1 by 30.
-30
Step 8
Convert to a decimal.
-30°