Trigonometry Examples

Convert from Radians to Degrees arctan(-1/( square root of 3))
arctan(-13)arctan(13)
Step 1
To convert radians to degrees, multiply by 180π180π, since a full circle is 360°360° or 2π2π radians.
(arctan(-13))180°π(arctan(13))180°π
Step 2
Multiply 1313 by 3333.
arctan(-(1333))180πarctan((1333))180π
Step 3
Combine and simplify the denominator.
Tap for more steps...
Step 3.1
Multiply 1313 by 3333.
arctan(-333)180πarctan(333)180π
Step 3.2
Raise 33 to the power of 11.
arctan(-3313)180πarctan(3313)180π
Step 3.3
Raise 33 to the power of 11.
arctan(-33131)180πarctan(33131)180π
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
arctan(-331+1)180πarctan(331+1)180π
Step 3.5
Add 11 and 11.
arctan(-332)180πarctan(332)180π
Step 3.6
Rewrite 3232 as 33.
Tap for more steps...
Step 3.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
arctan(-3(312)2)180πarctan⎜ ⎜3(312)2⎟ ⎟180π
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
arctan(-33122)180πarctan(33122)180π
Step 3.6.3
Combine 1212 and 22.
arctan(-3322)180πarctan(3322)180π
Step 3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 3.6.4.1
Cancel the common factor.
arctan(-3322)180π
Step 3.6.4.2
Rewrite the expression.
arctan(-331)180π
arctan(-331)180π
Step 3.6.5
Evaluate the exponent.
arctan(-33)180π
arctan(-33)180π
arctan(-33)180π
Step 4
The exact value of arctan(-33) is -π6.
-π6180π
Step 5
Cancel the common factor of π.
Tap for more steps...
Step 5.1
Move the leading negative in -π6 into the numerator.
-π6180π
Step 5.2
Factor π out of -π.
π-16180π
Step 5.3
Cancel the common factor.
π-16180π
Step 5.4
Rewrite the expression.
-16180
-16180
Step 6
Cancel the common factor of 6.
Tap for more steps...
Step 6.1
Factor 6 out of 180.
-16(6(30))
Step 6.2
Cancel the common factor.
-16(630)
Step 6.3
Rewrite the expression.
-130
-130
Step 7
Multiply -1 by 30.
-30
Step 8
Convert to a decimal.
-30°
 [x2  12  π  xdx ]