Trigonometry Examples

Convert to Trigonometric Form tan(90-theta)
tan(90-θ)
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=tan(90-θ) and b=0.
|z|=02+tan2(90-θ)
Step 4
Find |z|.
Tap for more steps...
Step 4.1
Raising 0 to any positive power yields 0.
|z|=0+tan2(90-θ)
Step 4.2
Add 0 and tan2(90-θ).
|z|=tan2(90-θ)
Step 4.3
Pull terms out from under the radical, assuming positive real numbers.
|z|=tan(90-θ)
|z|=tan(90-θ)
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(0tan(90-θ))
Step 6
Substitute the values of θ=arctan(0tan(90-θ)) and |z|=tan(90-θ).
tan(90-θ)(cos(arctan(0tan(90-θ)))+isin(arctan(0tan(90-θ))))
 [x2  12  π  xdx ]