Trigonometry Examples

Verify the Identity (tan(theta))/(cot(theta))=tan(theta)^2
tan(θ)cot(θ)=tan2(θ)
Step 1
Start on the left side.
tan(θ)cot(θ)
Step 2
Convert to sines and cosines.
Tap for more steps...
Step 2.1
Write tan(θ) in sines and cosines using the quotient identity.
sin(θ)cos(θ)cot(θ)
Step 2.2
Write cot(θ) in sines and cosines using the quotient identity.
sin(θ)cos(θ)cos(θ)sin(θ)
sin(θ)cos(θ)cos(θ)sin(θ)
Step 3
Simplify.
Tap for more steps...
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
sin(θ)cos(θ)sin(θ)cos(θ)
Step 3.2
Multiply sin(θ)cos(θ)sin(θ)cos(θ).
sin2(θ)cos2(θ)
sin2(θ)cos2(θ)
Step 4
Rewrite sin2(θ)cos2(θ) as tan2(θ).
tan2(θ)
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
tan(θ)cot(θ)=tan2(θ) is an identity
 [x2  12  π  xdx ]