Trigonometry Examples

Find the Trig Value csc(theta)=5 with pi/2<theta<pi
csc(θ)=5csc(θ)=5 with π2<θ<ππ2<θ<π
Step 1
Use the definition of cosecant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
csc(θ)=hypotenuseoppositecsc(θ)=hypotenuseopposite
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=-hypotenuse2-opposite2Adjacent=hypotenuse2opposite2
Step 3
Replace the known values in the equation.
Adjacent=-(5)2-(1)2Adjacent=(5)2(1)2
Step 4
Simplify inside the radical.
Tap for more steps...
Step 4.1
Negate (5)2-(1)2(5)2(1)2.
Adjacent =-(5)2-(1)2=(5)2(1)2
Step 4.2
Raise 55 to the power of 22.
Adjacent =-25-(1)2=25(1)2
Step 4.3
One to any power is one.
Adjacent =-25-11=2511
Step 4.4
Multiply -11 by 11.
Adjacent =-25-1=251
Step 4.5
Subtract 11 from 2525.
Adjacent =-24=24
Step 4.6
Rewrite 2424 as 226226.
Tap for more steps...
Step 4.6.1
Factor 44 out of 2424.
Adjacent =-4(6)=4(6)
Step 4.6.2
Rewrite 44 as 2222.
Adjacent =-226=226
Adjacent =-226=226
Step 4.7
Pull terms out from under the radical.
Adjacent =-(26)=(26)
Step 4.8
Multiply 22 by -11.
Adjacent =-26=26
Adjacent =-26=26
Step 5
Find the value of sine.
Tap for more steps...
Step 5.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=15sin(θ)=15
sin(θ)=15sin(θ)=15
Step 6
Find the value of cosine.
Tap for more steps...
Step 6.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=-265cos(θ)=265
Step 6.3
Move the negative in front of the fraction.
cos(θ)=-265cos(θ)=265
cos(θ)=-265cos(θ)=265
Step 7
Find the value of tangent.
Tap for more steps...
Step 7.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=1-26tan(θ)=126
Step 7.3
Simplify the value of tan(θ)tan(θ).
Tap for more steps...
Step 7.3.1
Move the negative in front of the fraction.
tan(θ)=-126tan(θ)=126
Step 7.3.2
Multiply 126126 by 6666.
tan(θ)=-(12666)tan(θ)=(12666)
Step 7.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 7.3.3.1
Multiply 126126 by 6666.
tan(θ)=-6266tan(θ)=6266
Step 7.3.3.2
Move 66.
tan(θ)=-62(66)tan(θ)=62(66)
Step 7.3.3.3
Raise 66 to the power of 11.
tan(θ)=-62(66)tan(θ)=62(66)
Step 7.3.3.4
Raise 66 to the power of 11.
tan(θ)=-62(66)tan(θ)=62(66)
Step 7.3.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
tan(θ)=-6261+1tan(θ)=6261+1
Step 7.3.3.6
Add 11 and 11.
tan(θ)=-6262tan(θ)=6262
Step 7.3.3.7
Rewrite 6262 as 66.
Tap for more steps...
Step 7.3.3.7.1
Use nax=axnnax=axn to rewrite 66 as 612612.
tan(θ)=-62(612)2tan(θ)=62(612)2
Step 7.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
tan(θ)=-626122tan(θ)=626122
Step 7.3.3.7.3
Combine 1212 and 22.
tan(θ)=-62622tan(θ)=62622
Step 7.3.3.7.4
Cancel the common factor of 22.
Tap for more steps...
Step 7.3.3.7.4.1
Cancel the common factor.
tan(θ)=-62622tan(θ)=62622
Step 7.3.3.7.4.2
Rewrite the expression.
tan(θ)=-626
tan(θ)=-626
Step 7.3.3.7.5
Evaluate the exponent.
tan(θ)=-626
tan(θ)=-626
tan(θ)=-626
Step 7.3.4
Multiply 2 by 6.
tan(θ)=-612
tan(θ)=-612
tan(θ)=-612
Step 8
Find the value of cotangent.
Tap for more steps...
Step 8.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=-261
Step 8.3
Divide -26 by 1.
cot(θ)=-26
cot(θ)=-26
Step 9
Find the value of secant.
Tap for more steps...
Step 9.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 9.2
Substitute in the known values.
sec(θ)=5-26
Step 9.3
Simplify the value of sec(θ).
Tap for more steps...
Step 9.3.1
Move the negative in front of the fraction.
sec(θ)=-526
Step 9.3.2
Multiply 526 by 66.
sec(θ)=-(52666)
Step 9.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 9.3.3.1
Multiply 526 by 66.
sec(θ)=-56266
Step 9.3.3.2
Move 6.
sec(θ)=-562(66)
Step 9.3.3.3
Raise 6 to the power of 1.
sec(θ)=-562(66)
Step 9.3.3.4
Raise 6 to the power of 1.
sec(θ)=-562(66)
Step 9.3.3.5
Use the power rule aman=am+n to combine exponents.
sec(θ)=-56261+1
Step 9.3.3.6
Add 1 and 1.
sec(θ)=-56262
Step 9.3.3.7
Rewrite 62 as 6.
Tap for more steps...
Step 9.3.3.7.1
Use nax=axn to rewrite 6 as 612.
sec(θ)=-562(612)2
Step 9.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(θ)=-5626122
Step 9.3.3.7.3
Combine 12 and 2.
sec(θ)=-562622
Step 9.3.3.7.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.3.3.7.4.1
Cancel the common factor.
sec(θ)=-562622
Step 9.3.3.7.4.2
Rewrite the expression.
sec(θ)=-5626
sec(θ)=-5626
Step 9.3.3.7.5
Evaluate the exponent.
sec(θ)=-5626
sec(θ)=-5626
sec(θ)=-5626
Step 9.3.4
Multiply 2 by 6.
sec(θ)=-5612
sec(θ)=-5612
sec(θ)=-5612
Step 10
This is the solution to each trig value.
sin(θ)=15
cos(θ)=-265
tan(θ)=-612
cot(θ)=-26
sec(θ)=-5612
csc(θ)=5
 [x2  12  π  xdx ]