Enter a problem...
Trigonometry Examples
csc(θ)=5csc(θ)=5 with π2<θ<ππ2<θ<π
Step 1
Use the definition of cosecant to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
csc(θ)=hypotenuseoppositecsc(θ)=hypotenuseopposite
Step 2
Find the adjacent side of the unit circle triangle. Since the hypotenuse and opposite sides are known, use the Pythagorean theorem to find the remaining side.
Adjacent=-√hypotenuse2-opposite2Adjacent=−√hypotenuse2−opposite2
Step 3
Replace the known values in the equation.
Adjacent=-√(5)2-(1)2Adjacent=−√(5)2−(1)2
Step 4
Step 4.1
Negate √(5)2-(1)2√(5)2−(1)2.
Adjacent =-√(5)2-(1)2=−√(5)2−(1)2
Step 4.2
Raise 55 to the power of 22.
Adjacent =-√25-(1)2=−√25−(1)2
Step 4.3
One to any power is one.
Adjacent =-√25-1⋅1=−√25−1⋅1
Step 4.4
Multiply -1−1 by 11.
Adjacent =-√25-1=−√25−1
Step 4.5
Subtract 11 from 2525.
Adjacent =-√24=−√24
Step 4.6
Rewrite 2424 as 22⋅622⋅6.
Step 4.6.1
Factor 44 out of 2424.
Adjacent =-√4(6)=−√4(6)
Step 4.6.2
Rewrite 44 as 2222.
Adjacent =-√22⋅6=−√22⋅6
Adjacent =-√22⋅6=−√22⋅6
Step 4.7
Pull terms out from under the radical.
Adjacent =-(2√6)=−(2√6)
Step 4.8
Multiply 22 by -1−1.
Adjacent =-2√6=−2√6
Adjacent =-2√6=−2√6
Step 5
Step 5.1
Use the definition of sine to find the value of sin(θ)sin(θ).
sin(θ)=opphypsin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=15sin(θ)=15
sin(θ)=15sin(θ)=15
Step 6
Step 6.1
Use the definition of cosine to find the value of cos(θ)cos(θ).
cos(θ)=adjhypcos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=-2√65cos(θ)=−2√65
Step 6.3
Move the negative in front of the fraction.
cos(θ)=-2√65cos(θ)=−2√65
cos(θ)=-2√65cos(θ)=−2√65
Step 7
Step 7.1
Use the definition of tangent to find the value of tan(θ)tan(θ).
tan(θ)=oppadjtan(θ)=oppadj
Step 7.2
Substitute in the known values.
tan(θ)=1-2√6tan(θ)=1−2√6
Step 7.3
Simplify the value of tan(θ)tan(θ).
Step 7.3.1
Move the negative in front of the fraction.
tan(θ)=-12√6tan(θ)=−12√6
Step 7.3.2
Multiply 12√612√6 by √6√6√6√6.
tan(θ)=-(12√6⋅√6√6)tan(θ)=−(12√6⋅√6√6)
Step 7.3.3
Combine and simplify the denominator.
Step 7.3.3.1
Multiply 12√612√6 by √6√6√6√6.
tan(θ)=-√62√6√6tan(θ)=−√62√6√6
Step 7.3.3.2
Move √6√6.
tan(θ)=-√62(√6√6)tan(θ)=−√62(√6√6)
Step 7.3.3.3
Raise √6√6 to the power of 11.
tan(θ)=-√62(√6√6)tan(θ)=−√62(√6√6)
Step 7.3.3.4
Raise √6√6 to the power of 11.
tan(θ)=-√62(√6√6)tan(θ)=−√62(√6√6)
Step 7.3.3.5
Use the power rule aman=am+naman=am+n to combine exponents.
tan(θ)=-√62√61+1tan(θ)=−√62√61+1
Step 7.3.3.6
Add 11 and 11.
tan(θ)=-√62√62tan(θ)=−√62√62
Step 7.3.3.7
Rewrite √62√62 as 66.
Step 7.3.3.7.1
Use n√ax=axnn√ax=axn to rewrite √6√6 as 612612.
tan(θ)=-√62(612)2tan(θ)=−√62(612)2
Step 7.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
tan(θ)=-√62⋅612⋅2tan(θ)=−√62⋅612⋅2
Step 7.3.3.7.3
Combine 1212 and 22.
tan(θ)=-√62⋅622tan(θ)=−√62⋅622
Step 7.3.3.7.4
Cancel the common factor of 22.
Step 7.3.3.7.4.1
Cancel the common factor.
tan(θ)=-√62⋅622tan(θ)=−√62⋅622
Step 7.3.3.7.4.2
Rewrite the expression.
tan(θ)=-√62⋅6
tan(θ)=-√62⋅6
Step 7.3.3.7.5
Evaluate the exponent.
tan(θ)=-√62⋅6
tan(θ)=-√62⋅6
tan(θ)=-√62⋅6
Step 7.3.4
Multiply 2 by 6.
tan(θ)=-√612
tan(θ)=-√612
tan(θ)=-√612
Step 8
Step 8.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 8.2
Substitute in the known values.
cot(θ)=-2√61
Step 8.3
Divide -2√6 by 1.
cot(θ)=-2√6
cot(θ)=-2√6
Step 9
Step 9.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 9.2
Substitute in the known values.
sec(θ)=5-2√6
Step 9.3
Simplify the value of sec(θ).
Step 9.3.1
Move the negative in front of the fraction.
sec(θ)=-52√6
Step 9.3.2
Multiply 52√6 by √6√6.
sec(θ)=-(52√6⋅√6√6)
Step 9.3.3
Combine and simplify the denominator.
Step 9.3.3.1
Multiply 52√6 by √6√6.
sec(θ)=-5√62√6√6
Step 9.3.3.2
Move √6.
sec(θ)=-5√62(√6√6)
Step 9.3.3.3
Raise √6 to the power of 1.
sec(θ)=-5√62(√6√6)
Step 9.3.3.4
Raise √6 to the power of 1.
sec(θ)=-5√62(√6√6)
Step 9.3.3.5
Use the power rule aman=am+n to combine exponents.
sec(θ)=-5√62√61+1
Step 9.3.3.6
Add 1 and 1.
sec(θ)=-5√62√62
Step 9.3.3.7
Rewrite √62 as 6.
Step 9.3.3.7.1
Use n√ax=axn to rewrite √6 as 612.
sec(θ)=-5√62(612)2
Step 9.3.3.7.2
Apply the power rule and multiply exponents, (am)n=amn.
sec(θ)=-5√62⋅612⋅2
Step 9.3.3.7.3
Combine 12 and 2.
sec(θ)=-5√62⋅622
Step 9.3.3.7.4
Cancel the common factor of 2.
Step 9.3.3.7.4.1
Cancel the common factor.
sec(θ)=-5√62⋅622
Step 9.3.3.7.4.2
Rewrite the expression.
sec(θ)=-5√62⋅6
sec(θ)=-5√62⋅6
Step 9.3.3.7.5
Evaluate the exponent.
sec(θ)=-5√62⋅6
sec(θ)=-5√62⋅6
sec(θ)=-5√62⋅6
Step 9.3.4
Multiply 2 by 6.
sec(θ)=-5√612
sec(θ)=-5√612
sec(θ)=-5√612
Step 10
This is the solution to each trig value.
sin(θ)=15
cos(θ)=-2√65
tan(θ)=-√612
cot(θ)=-2√6
sec(θ)=-5√612
csc(θ)=5