Trigonometry Examples

Find the Cosecant Given the Point (- square root of 3,1)
(-3,1)(3,1)
Step 1
To find the csc(θ)csc(θ) between the x-axis and the line between the points (0,0)(0,0) and (-3,1)(3,1), draw the triangle between the three points (0,0)(0,0), (-3,0)(3,0), and (-3,1)(3,1).
Opposite : 11
Adjacent : -33
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Simplify the expression.
Tap for more steps...
Step 2.1.1
Apply the product rule to -33.
(-1)232+(1)2(1)232+(1)2
Step 2.1.2
Raise -11 to the power of 22.
132+(1)2132+(1)2
Step 2.1.3
Multiply 3232 by 11.
32+(1)232+(1)2
32+(1)232+(1)2
Step 2.2
Rewrite 3232 as 33.
Tap for more steps...
Step 2.2.1
Use nax=axnnax=axn to rewrite 33 as 312312.
(312)2+(1)2(312)2+(1)2
Step 2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
3122+(1)23122+(1)2
Step 2.2.3
Combine 1212 and 22.
322+(1)2322+(1)2
Step 2.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.2.4.1
Cancel the common factor.
322+(1)2
Step 2.2.4.2
Rewrite the expression.
31+(1)2
31+(1)2
Step 2.2.5
Evaluate the exponent.
3+(1)2
3+(1)2
Step 2.3
Simplify the expression.
Tap for more steps...
Step 2.3.1
One to any power is one.
3+1
Step 2.3.2
Add 3 and 1.
4
Step 2.3.3
Rewrite 4 as 22.
22
22
Step 2.4
Pull terms out from under the radical, assuming positive real numbers.
2
2
Step 3
csc(θ)=HypotenuseOpposite therefore csc(θ)=21.
21
Step 4
Divide 2 by 1.
csc(θ)=2
 [x2  12  π  xdx ]