Enter a problem...
Trigonometry Examples
(-√3,1)(−√3,1)
Step 1
To find the csc(θ)csc(θ) between the x-axis and the line between the points (0,0)(0,0) and (-√3,1)(−√3,1), draw the triangle between the three points (0,0)(0,0), (-√3,0)(−√3,0), and (-√3,1)(−√3,1).
Opposite : 11
Adjacent : -√3−√3
Step 2
Step 2.1
Simplify the expression.
Step 2.1.1
Apply the product rule to -√3−√3.
√(-1)2√32+(1)2√(−1)2√32+(1)2
Step 2.1.2
Raise -1−1 to the power of 22.
√1√32+(1)2√1√32+(1)2
Step 2.1.3
Multiply √32√32 by 11.
√√32+(1)2√√32+(1)2
√√32+(1)2√√32+(1)2
Step 2.2
Rewrite √32√32 as 33.
Step 2.2.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
√(312)2+(1)2√(312)2+(1)2
Step 2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√312⋅2+(1)2√312⋅2+(1)2
Step 2.2.3
Combine 1212 and 22.
√322+(1)2√322+(1)2
Step 2.2.4
Cancel the common factor of 22.
Step 2.2.4.1
Cancel the common factor.
√322+(1)2
Step 2.2.4.2
Rewrite the expression.
√31+(1)2
√31+(1)2
Step 2.2.5
Evaluate the exponent.
√3+(1)2
√3+(1)2
Step 2.3
Simplify the expression.
Step 2.3.1
One to any power is one.
√3+1
Step 2.3.2
Add 3 and 1.
√4
Step 2.3.3
Rewrite 4 as 22.
√22
√22
Step 2.4
Pull terms out from under the radical, assuming positive real numbers.
2
2
Step 3
csc(θ)=HypotenuseOpposite therefore csc(θ)=21.
21
Step 4
Divide 2 by 1.
csc(θ)=2