Enter a problem...
Trigonometry Examples
cos(60°−45°)
Step 1
Use the difference formula for cosine to simplify the expression. The formula states that cos(A−B)=cos(A)cos(B)+sin(A)sin(B).
cos(60°)⋅cos(45°)+sin(60°)⋅sin(45°)
Step 2
Remove parentheses.
cos(60°)⋅cos(45°)+sin(60°)⋅sin(45°)
Step 3
Step 3.1
The exact value of cos(60°) is 12.
12⋅cos(45°)+sin(60°)⋅sin(45°)
Step 3.2
The exact value of cos(45°) is √22.
12⋅√22+sin(60°)⋅sin(45°)
Step 3.3
Multiply 12⋅√22.
Step 3.3.1
Multiply 12 by √22.
√22⋅2+sin(60°)⋅sin(45°)
Step 3.3.2
Multiply 2 by 2.
√24+sin(60°)⋅sin(45°)
√24+sin(60°)⋅sin(45°)
Step 3.4
The exact value of sin(60°) is √32.
√24+√32⋅sin(45°)
Step 3.5
The exact value of sin(45°) is √22.
√24+√32⋅√22
Step 3.6
Multiply √32⋅√22.
Step 3.6.1
Multiply √32 by √22.
√24+√3√22⋅2
Step 3.6.2
Combine using the product rule for radicals.
√24+√3⋅22⋅2
Step 3.6.3
Multiply 3 by 2.
√24+√62⋅2
Step 3.6.4
Multiply 2 by 2.
√24+√64
√24+√64
√24+√64
Step 4
Combine the numerators over the common denominator.
√2+√64
Step 5
The result can be shown in multiple forms.
Exact Form:
√2+√64
Decimal Form:
0.96592582…