Trigonometry Examples

Verify the Identity ((1+cos(A))(1-cos(A)))/(sin(A))=sin(A)
(1+cos(A))(1-cos(A))sin(A)=sin(A)
Step 1
Start on the left side.
(1+cos(A))(1-cos(A))sin(A)
Step 2
Apply the distributive property.
(1+cos(A))1+(1+cos(A))(-cos(A))sin(A)
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Multiply 1+cos(A) by 1.
1+cos(A)+(1+cos(A))(-cos(A))sin(A)
Step 3.1.2
Apply the distributive property.
1+cos(A)+1(-cos(A))+cos(A)(-cos(A))sin(A)
Step 3.1.3
Multiply -cos(A) by 1.
1+cos(A)-cos(A)+cos(A)(-cos(A))sin(A)
Step 3.1.4
Multiply cos(A)(-cos(A)).
Tap for more steps...
Step 3.1.4.1
Raise cos(A) to the power of 1.
1+cos(A)-cos(A)-(cos(A)1cos(A))sin(A)
Step 3.1.4.2
Raise cos(A) to the power of 1.
1+cos(A)-cos(A)-(cos(A)1cos(A)1)sin(A)
Step 3.1.4.3
Use the power rule aman=am+n to combine exponents.
1+cos(A)-cos(A)-cos(A)1+1sin(A)
Step 3.1.4.4
Add 1 and 1.
1+cos(A)-cos(A)-cos(A)2sin(A)
1+cos(A)-cos(A)-cos(A)2sin(A)
1+cos(A)-cos(A)-cos(A)2sin(A)
Step 3.2
Subtract cos(A) from cos(A).
1+0-cos(A)2sin(A)
Step 3.3
Add 1 and 0.
1-cos2(A)sin(A)
1-cos2(A)sin(A)
Step 4
Apply pythagorean identity.
sin2(A)sin(A)
Step 5
Cancel the common factor of sin(A)2 and sin(A).
sin(A)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
(1+cos(A))(1-cos(A))sin(A)=sin(A) is an identity
 [x2  12  π  xdx ]