Enter a problem...
Trigonometry Examples
(sin(x))(cot(x)+cos(x)tan(x))=cos(x)+sin2(x)(sin(x))(cot(x)+cos(x)tan(x))=cos(x)+sin2(x)
Step 1
Start on the left side.
(sin(x))(cot(x)+cos(x)tan(x))(sin(x))(cot(x)+cos(x)tan(x))
Step 2
Step 2.1
Write cot(x)cot(x) in sines and cosines using the quotient identity.
sin(x)(cos(x)sin(x)+cos(x)tan(x))sin(x)(cos(x)sin(x)+cos(x)tan(x))
Step 2.2
Write tan(x)tan(x) in sines and cosines using the quotient identity.
sin(x)(cos(x)sin(x)+cos(x)sin(x)cos(x))sin(x)(cos(x)sin(x)+cos(x)sin(x)cos(x))
sin(x)(cos(x)sin(x)+cos(x)sin(x)cos(x))sin(x)(cos(x)sin(x)+cos(x)sin(x)cos(x))
Step 3
Step 3.1
Cancel the common factor of cos(x)cos(x).
Step 3.1.1
Cancel the common factor.
sin(x)(cos(x)sin(x)+cos(x)sin(x)cos(x))
Step 3.1.2
Rewrite the expression.
sin(x)(cos(x)sin(x)+sin(x))
sin(x)(cos(x)sin(x)+sin(x))
Step 3.2
Apply the distributive property.
sin(x)cos(x)sin(x)+sin(x)sin(x)
Step 3.3
Cancel the common factor of sin(x).
Step 3.3.1
Cancel the common factor.
sin(x)cos(x)sin(x)+sin(x)sin(x)
Step 3.3.2
Rewrite the expression.
cos(x)+sin(x)sin(x)
cos(x)+sin(x)sin(x)
Step 3.4
Multiply sin(x)sin(x).
cos(x)+sin2(x)
cos(x)+sin2(x)
Step 4
Because the two sides have been shown to be equivalent, the equation is an identity.
(sin(x))(cot(x)+cos(x)tan(x))=cos(x)+sin2(x) is an identity