Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=1/4sin(x-(2pi)/3)
y=14sin(x-2π3)y=14sin(x2π3)
Step 1
Use the form asin(bx-c)+dasin(bxc)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=14a=14
b=1b=1
c=2π3c=2π3
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 1414
Step 3
Find the period of sin(x-2π3)4sin(x2π3)4.
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 3.4
Divide 2π2π by 11.
2π2π
2π2π
Step 4
Find the phase shift using the formula cbcb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 2π312π31
Step 4.3
Divide 2π32π3 by 11.
Phase Shift: 2π32π3
Phase Shift: 2π32π3
Step 5
List the properties of the trigonometric function.
Amplitude: 1414
Period: 2π2π
Phase Shift: 2π32π3 (2π32π3 to the right)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]  x2  12  π  xdx