Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=1/2cos((4pix)/5-5pi)
y=12cos(4πx5-5π)
Step 1
Use the form acos(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=12
b=4π5
c=5π
d=0
Step 2
Find the amplitude |a|.
Amplitude: 12
Step 3
Find the period of cos(4πx5-5π)2.
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 4π5 in the formula for period.
2π|4π5|
Step 3.3
4π5 is approximately 2.51327412 which is positive so remove the absolute value
2π4π5
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
2π54π
Step 3.5
Cancel the common factor of 2π.
Tap for more steps...
Step 3.5.1
Factor 2π out of 4π.
2π52π(2)
Step 3.5.2
Cancel the common factor.
2π52π2
Step 3.5.3
Rewrite the expression.
52
52
52
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 5π4π5
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 5π(54π)
Step 4.4
Cancel the common factor of π.
Tap for more steps...
Step 4.4.1
Factor π out of 5π.
Phase Shift: π(5(54π))
Step 4.4.2
Factor π out of 4π.
Phase Shift: π(5(5π4))
Step 4.4.3
Cancel the common factor.
Phase Shift: π(5(5π4))
Step 4.4.4
Rewrite the expression.
Phase Shift: 5(54)
Phase Shift: 5(54)
Step 4.5
Combine 5 and 54.
Phase Shift: 554
Step 4.6
Multiply 5 by 5.
Phase Shift: 254
Phase Shift: 254
Step 5
List the properties of the trigonometric function.
Amplitude: 12
Period: 52
Phase Shift: 254 (254 to the right)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]