Trigonometry Examples

Solve for θ in Degrees 6sin(theta)^2-17sin(theta)+14=-4sin(theta)+9
6sin2(θ)-17sin(θ)+14=-4sin(θ)+96sin2(θ)17sin(θ)+14=4sin(θ)+9
Step 1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 1.1
Add 4sin(θ)4sin(θ) to both sides of the equation.
6sin2(θ)-17sin(θ)+14+4sin(θ)=96sin2(θ)17sin(θ)+14+4sin(θ)=9
Step 1.2
Subtract 99 from both sides of the equation.
6sin2(θ)-17sin(θ)+14+4sin(θ)-9=06sin2(θ)17sin(θ)+14+4sin(θ)9=0
6sin2(θ)-17sin(θ)+14+4sin(θ)-9=06sin2(θ)17sin(θ)+14+4sin(θ)9=0
Step 2
Simplify the left side of the equation.
Tap for more steps...
Step 2.1
Add -17sin(θ)17sin(θ) and 4sin(θ)4sin(θ).
6sin2(θ)+14-13sin(θ)-9=06sin2(θ)+1413sin(θ)9=0
Step 2.2
Subtract 99 from 1414.
6sin2(θ)+5-13sin(θ)=06sin2(θ)+513sin(θ)=0
6sin2(θ)+5-13sin(θ)=06sin2(θ)+513sin(θ)=0
Step 3
Factor by grouping.
Tap for more steps...
Step 3.1
Reorder terms.
6sin2(θ)-13sin(θ)+5=06sin2(θ)13sin(θ)+5=0
Step 3.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is ac=65=30ac=65=30 and whose sum is b=-13b=13.
Tap for more steps...
Step 3.2.1
Factor -1313 out of -13sin(θ)13sin(θ).
6sin2(θ)-13sin(θ)+5=06sin2(θ)13sin(θ)+5=0
Step 3.2.2
Rewrite -1313 as -33 plus -1010
6sin2(θ)+(-3-10)sin(θ)+5=06sin2(θ)+(310)sin(θ)+5=0
Step 3.2.3
Apply the distributive property.
6sin2(θ)-3sin(θ)-10sin(θ)+5=06sin2(θ)3sin(θ)10sin(θ)+5=0
6sin2(θ)-3sin(θ)-10sin(θ)+5=06sin2(θ)3sin(θ)10sin(θ)+5=0
Step 3.3
Factor out the greatest common factor from each group.
Tap for more steps...
Step 3.3.1
Group the first two terms and the last two terms.
6sin2(θ)-3sin(θ)-10sin(θ)+5=06sin2(θ)3sin(θ)10sin(θ)+5=0
Step 3.3.2
Factor out the greatest common factor (GCF) from each group.
3sin(θ)(2sin(θ)-1)-5(2sin(θ)-1)=03sin(θ)(2sin(θ)1)5(2sin(θ)1)=0
3sin(θ)(2sin(θ)-1)-5(2sin(θ)-1)=03sin(θ)(2sin(θ)1)5(2sin(θ)1)=0
Step 3.4
Factor the polynomial by factoring out the greatest common factor, 2sin(θ)-12sin(θ)1.
(2sin(θ)-1)(3sin(θ)-5)=0(2sin(θ)1)(3sin(θ)5)=0
(2sin(θ)-1)(3sin(θ)-5)=0(2sin(θ)1)(3sin(θ)5)=0
Step 4
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
2sin(θ)-1=02sin(θ)1=0
3sin(θ)-5=03sin(θ)5=0
Step 5
Set 2sin(θ)-12sin(θ)1 equal to 00 and solve for θθ.
Tap for more steps...
Step 5.1
Set 2sin(θ)-12sin(θ)1 equal to 00.
2sin(θ)-1=02sin(θ)1=0
Step 5.2
Solve 2sin(θ)-1=02sin(θ)1=0 for θθ.
Tap for more steps...
Step 5.2.1
Add 11 to both sides of the equation.
2sin(θ)=12sin(θ)=1
Step 5.2.2
Divide each term in 2sin(θ)=12sin(θ)=1 by 22 and simplify.
Tap for more steps...
Step 5.2.2.1
Divide each term in 2sin(θ)=12sin(θ)=1 by 22.
2sin(θ)2=122sin(θ)2=12
Step 5.2.2.2
Simplify the left side.
Tap for more steps...
Step 5.2.2.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 5.2.2.2.1.1
Cancel the common factor.
2sin(θ)2=12
Step 5.2.2.2.1.2
Divide sin(θ) by 1.
sin(θ)=12
sin(θ)=12
sin(θ)=12
sin(θ)=12
Step 5.2.3
Take the inverse sine of both sides of the equation to extract θ from inside the sine.
θ=arcsin(12)
Step 5.2.4
Simplify the right side.
Tap for more steps...
Step 5.2.4.1
The exact value of arcsin(12) is 30.
θ=30
θ=30
Step 5.2.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
θ=180-30
Step 5.2.6
Subtract 30 from 180.
θ=150
Step 5.2.7
Find the period of sin(θ).
Tap for more steps...
Step 5.2.7.1
The period of the function can be calculated using 360|b|.
360|b|
Step 5.2.7.2
Replace b with 1 in the formula for period.
360|1|
Step 5.2.7.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
3601
Step 5.2.7.4
Divide 360 by 1.
360
360
Step 5.2.8
The period of the sin(θ) function is 360 so values will repeat every 360 degrees in both directions.
θ=30+360n,150+360n, for any integer n
θ=30+360n,150+360n, for any integer n
θ=30+360n,150+360n, for any integer n
Step 6
Set 3sin(θ)-5 equal to 0 and solve for θ.
Tap for more steps...
Step 6.1
Set 3sin(θ)-5 equal to 0.
3sin(θ)-5=0
Step 6.2
Solve 3sin(θ)-5=0 for θ.
Tap for more steps...
Step 6.2.1
Add 5 to both sides of the equation.
3sin(θ)=5
Step 6.2.2
Divide each term in 3sin(θ)=5 by 3 and simplify.
Tap for more steps...
Step 6.2.2.1
Divide each term in 3sin(θ)=5 by 3.
3sin(θ)3=53
Step 6.2.2.2
Simplify the left side.
Tap for more steps...
Step 6.2.2.2.1
Cancel the common factor of 3.
Tap for more steps...
Step 6.2.2.2.1.1
Cancel the common factor.
3sin(θ)3=53
Step 6.2.2.2.1.2
Divide sin(θ) by 1.
sin(θ)=53
sin(θ)=53
sin(θ)=53
sin(θ)=53
Step 6.2.3
The range of sine is -1y1. Since 53 does not fall in this range, there is no solution.
No solution
No solution
No solution
Step 7
The final solution is all the values that make (2sin(θ)-1)(3sin(θ)-5)=0 true.
θ=30+360n,150+360n, for any integer n
 [x2  12  π  xdx ]