Enter a problem...
Trigonometry Examples
6sin2(θ)-17sin(θ)+14=-4sin(θ)+96sin2(θ)−17sin(θ)+14=−4sin(θ)+9
Step 1
Step 1.1
Add 4sin(θ)4sin(θ) to both sides of the equation.
6sin2(θ)-17sin(θ)+14+4sin(θ)=96sin2(θ)−17sin(θ)+14+4sin(θ)=9
Step 1.2
Subtract 99 from both sides of the equation.
6sin2(θ)-17sin(θ)+14+4sin(θ)-9=06sin2(θ)−17sin(θ)+14+4sin(θ)−9=0
6sin2(θ)-17sin(θ)+14+4sin(θ)-9=06sin2(θ)−17sin(θ)+14+4sin(θ)−9=0
Step 2
Step 2.1
Add -17sin(θ)−17sin(θ) and 4sin(θ)4sin(θ).
6sin2(θ)+14-13sin(θ)-9=06sin2(θ)+14−13sin(θ)−9=0
Step 2.2
Subtract 99 from 1414.
6sin2(θ)+5-13sin(θ)=06sin2(θ)+5−13sin(θ)=0
6sin2(θ)+5-13sin(θ)=06sin2(θ)+5−13sin(θ)=0
Step 3
Step 3.1
Reorder terms.
6sin2(θ)-13sin(θ)+5=06sin2(θ)−13sin(θ)+5=0
Step 3.2
For a polynomial of the form ax2+bx+cax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=6⋅5=30a⋅c=6⋅5=30 and whose sum is b=-13b=−13.
Step 3.2.1
Factor -13−13 out of -13sin(θ)−13sin(θ).
6sin2(θ)-13sin(θ)+5=06sin2(θ)−13sin(θ)+5=0
Step 3.2.2
Rewrite -13−13 as -3−3 plus -10−10
6sin2(θ)+(-3-10)sin(θ)+5=06sin2(θ)+(−3−10)sin(θ)+5=0
Step 3.2.3
Apply the distributive property.
6sin2(θ)-3sin(θ)-10sin(θ)+5=06sin2(θ)−3sin(θ)−10sin(θ)+5=0
6sin2(θ)-3sin(θ)-10sin(θ)+5=06sin2(θ)−3sin(θ)−10sin(θ)+5=0
Step 3.3
Factor out the greatest common factor from each group.
Step 3.3.1
Group the first two terms and the last two terms.
6sin2(θ)-3sin(θ)-10sin(θ)+5=06sin2(θ)−3sin(θ)−10sin(θ)+5=0
Step 3.3.2
Factor out the greatest common factor (GCF) from each group.
3sin(θ)(2sin(θ)-1)-5(2sin(θ)-1)=03sin(θ)(2sin(θ)−1)−5(2sin(θ)−1)=0
3sin(θ)(2sin(θ)-1)-5(2sin(θ)-1)=03sin(θ)(2sin(θ)−1)−5(2sin(θ)−1)=0
Step 3.4
Factor the polynomial by factoring out the greatest common factor, 2sin(θ)-12sin(θ)−1.
(2sin(θ)-1)(3sin(θ)-5)=0(2sin(θ)−1)(3sin(θ)−5)=0
(2sin(θ)-1)(3sin(θ)-5)=0(2sin(θ)−1)(3sin(θ)−5)=0
Step 4
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
2sin(θ)-1=02sin(θ)−1=0
3sin(θ)-5=03sin(θ)−5=0
Step 5
Step 5.1
Set 2sin(θ)-12sin(θ)−1 equal to 00.
2sin(θ)-1=02sin(θ)−1=0
Step 5.2
Solve 2sin(θ)-1=02sin(θ)−1=0 for θθ.
Step 5.2.1
Add 11 to both sides of the equation.
2sin(θ)=12sin(θ)=1
Step 5.2.2
Divide each term in 2sin(θ)=12sin(θ)=1 by 22 and simplify.
Step 5.2.2.1
Divide each term in 2sin(θ)=12sin(θ)=1 by 22.
2sin(θ)2=122sin(θ)2=12
Step 5.2.2.2
Simplify the left side.
Step 5.2.2.2.1
Cancel the common factor of 22.
Step 5.2.2.2.1.1
Cancel the common factor.
2sin(θ)2=12
Step 5.2.2.2.1.2
Divide sin(θ) by 1.
sin(θ)=12
sin(θ)=12
sin(θ)=12
sin(θ)=12
Step 5.2.3
Take the inverse sine of both sides of the equation to extract θ from inside the sine.
θ=arcsin(12)
Step 5.2.4
Simplify the right side.
Step 5.2.4.1
The exact value of arcsin(12) is 30.
θ=30
θ=30
Step 5.2.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
θ=180-30
Step 5.2.6
Subtract 30 from 180.
θ=150
Step 5.2.7
Find the period of sin(θ).
Step 5.2.7.1
The period of the function can be calculated using 360|b|.
360|b|
Step 5.2.7.2
Replace b with 1 in the formula for period.
360|1|
Step 5.2.7.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
3601
Step 5.2.7.4
Divide 360 by 1.
360
360
Step 5.2.8
The period of the sin(θ) function is 360 so values will repeat every 360 degrees in both directions.
θ=30+360n,150+360n, for any integer n
θ=30+360n,150+360n, for any integer n
θ=30+360n,150+360n, for any integer n
Step 6
Step 6.1
Set 3sin(θ)-5 equal to 0.
3sin(θ)-5=0
Step 6.2
Solve 3sin(θ)-5=0 for θ.
Step 6.2.1
Add 5 to both sides of the equation.
3sin(θ)=5
Step 6.2.2
Divide each term in 3sin(θ)=5 by 3 and simplify.
Step 6.2.2.1
Divide each term in 3sin(θ)=5 by 3.
3sin(θ)3=53
Step 6.2.2.2
Simplify the left side.
Step 6.2.2.2.1
Cancel the common factor of 3.
Step 6.2.2.2.1.1
Cancel the common factor.
3sin(θ)3=53
Step 6.2.2.2.1.2
Divide sin(θ) by 1.
sin(θ)=53
sin(θ)=53
sin(θ)=53
sin(θ)=53
Step 6.2.3
The range of sine is -1≤y≤1. Since 53 does not fall in this range, there is no solution.
No solution
No solution
No solution
Step 7
The final solution is all the values that make (2sin(θ)-1)(3sin(θ)-5)=0 true.
θ=30+360n,150+360n, for any integer n