Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=1/4cos((2x)/7+1/3)
y=14cos(2x7+13)
Step 1
Use the form acos(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=14
b=27
c=-13
d=0
Step 2
Find the amplitude |a|.
Amplitude: 14
Step 3
Find the period of cos(2x7+13)4.
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 27 in the formula for period.
2π|27|
Step 3.3
27 is approximately 0.285714 which is positive so remove the absolute value
2π27
Step 3.4
Multiply the numerator by the reciprocal of the denominator.
2π72
Step 3.5
Cancel the common factor of 2.
Tap for more steps...
Step 3.5.1
Factor 2 out of 2π.
2(π)72
Step 3.5.2
Cancel the common factor.
2π72
Step 3.5.3
Rewrite the expression.
π7
π7
Step 3.6
Move 7 to the left of π.
7π
7π
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: -1327
Step 4.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: -1372
Step 4.4
Multiply -1372.
Tap for more steps...
Step 4.4.1
Multiply 72 by 13.
Phase Shift: -723
Step 4.4.2
Multiply 2 by 3.
Phase Shift: -76
Phase Shift: -76
Phase Shift: -76
Step 5
List the properties of the trigonometric function.
Amplitude: 14
Period: 7π
Phase Shift: -76 (76 to the left)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]