Enter a problem...
Trigonometry Examples
x3-2=(x-3√2)(x2+3√2x+3√4)x3−2=(x−3√2)(x2+3√2x+3√4)
Step 1
Expand (x-3√2)(x2+3√2x+3√4)(x−3√2)(x2+3√2x+3√4) by multiplying each term in the first expression by each term in the second expression.
x3-2=x⋅x2+x(3√2x)+x3√4-3√2x2-3√2(3√2x)-3√23√4x3−2=x⋅x2+x(3√2x)+x3√4−3√2x2−3√2(3√2x)−3√23√4
Step 2
Step 2.1
Multiply xx by x2x2 by adding the exponents.
Step 2.1.1
Multiply xx by x2x2.
Step 2.1.1.1
Raise xx to the power of 11.
x3-2=x1x2+x(3√2x)+x3√4-3√2x2-3√2(3√2x)-3√23√4x3−2=x1x2+x(3√2x)+x3√4−3√2x2−3√2(3√2x)−3√23√4
Step 2.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
x3-2=x1+2+x(3√2x)+x3√4-3√2x2-3√2(3√2x)-3√23√4x3−2=x1+2+x(3√2x)+x3√4−3√2x2−3√2(3√2x)−3√23√4
x3-2=x1+2+x(3√2x)+x3√4-3√2x2-3√2(3√2x)-3√23√4
Step 2.1.2
Add 1 and 2.
x3-2=x3+x(3√2x)+x3√4-3√2x2-3√2(3√2x)-3√23√4
x3-2=x3+x(3√2x)+x3√4-3√2x2-3√2(3√2x)-3√23√4
Step 2.2
Rewrite using the commutative property of multiplication.
x3-2=x3+3√2x⋅x+x3√4-3√2x2-3√2(3√2x)-3√23√4
Step 2.3
Multiply x by x by adding the exponents.
Step 2.3.1
Move x.
x3-2=x3+3√2(x⋅x)+x3√4-3√2x2-3√2(3√2x)-3√23√4
Step 2.3.2
Multiply x by x.
x3-2=x3+3√2x2+x3√4-3√2x2-3√2(3√2x)-3√23√4
x3-2=x3+3√2x2+x3√4-3√2x2-3√2(3√2x)-3√23√4
Step 2.4
Multiply -3√2(3√2x).
Step 2.4.1
Raise 3√2 to the power of 1.
x3-2=x3+3√2x2+x3√4-3√2x2-(3√213√2)x-3√23√4
Step 2.4.2
Raise 3√2 to the power of 1.
x3-2=x3+3√2x2+x3√4-3√2x2-(3√213√21)x-3√23√4
Step 2.4.3
Use the power rule aman=am+n to combine exponents.
x3-2=x3+3√2x2+x3√4-3√2x2-3√21+1x-3√23√4
Step 2.4.4
Add 1 and 1.
x3-2=x3+3√2x2+x3√4-3√2x2-3√22x-3√23√4
x3-2=x3+3√2x2+x3√4-3√2x2-3√22x-3√23√4
Step 2.5
Rewrite 3√22 as 3√22.
x3-2=x3+3√2x2+x3√4-3√2x2-3√22x-3√23√4
Step 2.6
Raise 2 to the power of 2.
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-3√23√4
Step 2.7
Multiply -3√23√4.
Step 2.7.1
Combine using the product rule for radicals.
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-3√4⋅2
Step 2.7.2
Multiply 4 by 2.
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-3√8
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-3√8
Step 2.8
Rewrite 8 as 23.
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-3√23
Step 2.9
Pull terms out from under the radical, assuming real numbers.
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-1⋅2
Step 2.10
Multiply -1 by 2.
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-2
x3-2=x3+3√2x2+x3√4-3√2x2-3√4x-2
Step 3
Step 3.1
Subtract 3√2x2 from 3√2x2.
x3-2=x3+x3√4+0-3√4x-2
Step 3.2
Add x3+x3√4 and 0.
x3-2=x3+x3√4-3√4x-2
Step 3.3
Reorder the factors in the terms x3√4 and -3√4x.
x3-2=x3+x3√4-x3√4-2
Step 3.4
Subtract x3√4 from x3√4.
x3-2=x3+0-2
Step 3.5
Add x3 and 0.
x3-2=x3-2
x3-2=x3-2
Step 4
Since the two sides have been shown to be equivalent, the equation is an identity.
x3-2=(x-3√2)(x2+3√2x+3√4) is an identity.