Trigonometry Examples

Verify the Identity x^3-2=(x- cube root of 2)(x^2+ cube root of 2x+ cube root of 4)
x3-2=(x-32)(x2+32x+34)x32=(x32)(x2+32x+34)
Step 1
Expand (x-32)(x2+32x+34)(x32)(x2+32x+34) by multiplying each term in the first expression by each term in the second expression.
x3-2=xx2+x(32x)+x34-32x2-32(32x)-3234x32=xx2+x(32x)+x3432x232(32x)3234
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Multiply xx by x2x2 by adding the exponents.
Tap for more steps...
Step 2.1.1
Multiply xx by x2x2.
Tap for more steps...
Step 2.1.1.1
Raise xx to the power of 11.
x3-2=x1x2+x(32x)+x34-32x2-32(32x)-3234x32=x1x2+x(32x)+x3432x232(32x)3234
Step 2.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
x3-2=x1+2+x(32x)+x34-32x2-32(32x)-3234x32=x1+2+x(32x)+x3432x232(32x)3234
x3-2=x1+2+x(32x)+x34-32x2-32(32x)-3234
Step 2.1.2
Add 1 and 2.
x3-2=x3+x(32x)+x34-32x2-32(32x)-3234
x3-2=x3+x(32x)+x34-32x2-32(32x)-3234
Step 2.2
Rewrite using the commutative property of multiplication.
x3-2=x3+32xx+x34-32x2-32(32x)-3234
Step 2.3
Multiply x by x by adding the exponents.
Tap for more steps...
Step 2.3.1
Move x.
x3-2=x3+32(xx)+x34-32x2-32(32x)-3234
Step 2.3.2
Multiply x by x.
x3-2=x3+32x2+x34-32x2-32(32x)-3234
x3-2=x3+32x2+x34-32x2-32(32x)-3234
Step 2.4
Multiply -32(32x).
Tap for more steps...
Step 2.4.1
Raise 32 to the power of 1.
x3-2=x3+32x2+x34-32x2-(32132)x-3234
Step 2.4.2
Raise 32 to the power of 1.
x3-2=x3+32x2+x34-32x2-(321321)x-3234
Step 2.4.3
Use the power rule aman=am+n to combine exponents.
x3-2=x3+32x2+x34-32x2-321+1x-3234
Step 2.4.4
Add 1 and 1.
x3-2=x3+32x2+x34-32x2-322x-3234
x3-2=x3+32x2+x34-32x2-322x-3234
Step 2.5
Rewrite 322 as 322.
x3-2=x3+32x2+x34-32x2-322x-3234
Step 2.6
Raise 2 to the power of 2.
x3-2=x3+32x2+x34-32x2-34x-3234
Step 2.7
Multiply -3234.
Tap for more steps...
Step 2.7.1
Combine using the product rule for radicals.
x3-2=x3+32x2+x34-32x2-34x-342
Step 2.7.2
Multiply 4 by 2.
x3-2=x3+32x2+x34-32x2-34x-38
x3-2=x3+32x2+x34-32x2-34x-38
Step 2.8
Rewrite 8 as 23.
x3-2=x3+32x2+x34-32x2-34x-323
Step 2.9
Pull terms out from under the radical, assuming real numbers.
x3-2=x3+32x2+x34-32x2-34x-12
Step 2.10
Multiply -1 by 2.
x3-2=x3+32x2+x34-32x2-34x-2
x3-2=x3+32x2+x34-32x2-34x-2
Step 3
Combine the opposite terms in x3+32x2+x34-32x2-34x-2.
Tap for more steps...
Step 3.1
Subtract 32x2 from 32x2.
x3-2=x3+x34+0-34x-2
Step 3.2
Add x3+x34 and 0.
x3-2=x3+x34-34x-2
Step 3.3
Reorder the factors in the terms x34 and -34x.
x3-2=x3+x34-x34-2
Step 3.4
Subtract x34 from x34.
x3-2=x3+0-2
Step 3.5
Add x3 and 0.
x3-2=x3-2
x3-2=x3-2
Step 4
Since the two sides have been shown to be equivalent, the equation is an identity.
x3-2=(x-32)(x2+32x+34) is an identity.
 [x2  12  π  xdx ]