50501 |
Solve for θ in Degrees |
sec(theta)=-2 |
|
50502 |
Solve for x in Radians |
2sin(x)^2-sin(x)-1=0 |
|
50503 |
Ermittele den Kotangens bei gegebenem Punkt |
(-5/13,12/13) |
|
50504 |
Solve for x in Radians |
cos(x)+1=0 |
|
50505 |
Rechne von Radiant in Grad um |
(3pi)/4rad |
rad |
50506 |
제III사분면에서의 다른 삼각함수 값 구하기 |
tan(theta)=12/5 |
|
50507 |
제IV사분면에서의 다른 삼각함수 값 구하기 |
cos(theta)=( Quadratwurzel von 3)/2 |
|
50508 |
Solve for x in Radians |
tan(x)^2-1=0 |
|
50509 |
Solve for x in Radians |
2sin(x) = square root of 3 |
|
50510 |
제II사분면에서의 다른 삼각함수 값 구하기 |
tan(theta)=-5/12 |
|
50511 |
제IV사분면에서의 다른 삼각함수 값 구하기 |
cos(theta)=15/17 |
|
50512 |
Solve for x in Radians |
sin(x)^2-1=0 |
|
50513 |
Ermittele den Sekans bei gegebenem Punkt |
(( Quadratwurzel von 3)/2,1/2) |
|
50514 |
Rechne von Grad nach Radiant um |
315deg |
degrees |
50515 |
Solve for x in Degrees |
tan(x)=0 |
|
50516 |
Rechne von Grad nach Radiant um |
2pi |
|
50517 |
Solve for θ in Radians |
sec(theta) = square root of 2 |
|
50518 |
Solve for θ in Degrees |
tan(theta)^2+tan(theta)=0 |
|
50519 |
제IV사분면에서의 다른 삼각함수 값 구하기 |
sin(theta)=-5/13 |
|
50520 |
제II사분면에서의 다른 삼각함수 값 구하기 |
tan(theta)=-( Quadratwurzel von 3)/3 |
|
50521 |
Solve for x in Degrees |
tan(x)=- Quadratwurzel von 3 |
|
50522 |
Überprüfe die Identitätsgleichung |
(1-cos(x)^2)cot(x)^2=cos(x)^2 |
|
50523 |
Rechne von Radiant in Grad um |
4/5pi |
|
50524 |
Solve for x in Radians |
2cos(x)-1=0 |
|
50525 |
Solve for θ in Radians |
csc(theta)-2=0 |
|
50526 |
Solve for x in Radians |
cos(x)=-( Quadratwurzel von 2)/2 |
|
50527 |
Solve for x in Radians |
tan(x)=-( Quadratwurzel von 3)/3 |
|
50528 |
Ermittele den Kotangens bei gegebenem Punkt |
(1,-1) |
|
50529 |
Expandiere mithilfe von Summen-/Differenzformeln |
cos(x+y) |
|
50530 |
Solve for θ in Radians |
csc(theta) = square root of 2 |
|
50531 |
Solve for x in Radians |
2sin(x)^2+sin(x)-1=0 |
|
50532 |
Solve for x in Degrees |
cos(x)=( Quadratwurzel von 2)/2 |
|
50533 |
Ermittele den Kotangens bei gegebenem Punkt |
(-8/17,15/17) |
|
50534 |
Solve for x in Radians |
sin(x)^2=2+2cos(x) |
|
50535 |
Solve for θ in Radians |
cot(theta)=0 |
|
50536 |
Solve for θ in Radians |
sec(theta)+2=0 |
|
50537 |
Solve for θ in Radians |
sec(theta)+ Quadratwurzel von 2=0 |
|
50538 |
Rechne von Radiant in Grad um |
(2pi)/3rad |
rad |
50539 |
Solve for x in Radians |
4cos(x)^2=5-4sin(x) |
|
50540 |
Solve for x in Degrees |
sin(x)=-1 |
|
50541 |
Rechne von Radiant in Grad um |
pi/5rad |
rad |
50542 |
제II사분면에서의 다른 삼각함수 값 구하기 |
cos(theta)=-( Quadratwurzel von 2)/2 |
|
50543 |
Solve for θ in Radians |
Quadratwurzel von 3sec(theta)+2=0 |
|
50544 |
Solve for x in Radians |
sin(x)=-( Quadratwurzel von 2)/2 |
|
50545 |
Solve for x in Radians |
cos(x)-1=0 |
|
50546 |
Solve for θ in Radians |
csc(theta)=(2 Quadratwurzel von 3)/3 |
|
50547 |
Wandle in die trigonometrische Form um |
cot(x)^2 |
|
50548 |
Solve for θ in Radians |
Quadratwurzel von 3sec(theta)-2=0 |
|
50549 |
Vereinfache mithilfe der Halbwinkelformel |
sin(pi/12) |
|
50550 |
Vereinfache mithilfe der Halbwinkelformel |
sin(165 Grad ) |
|
50551 |
Rechne von Radiant in Grad um |
(5pi)/6rad |
rad |
50552 |
Wandle in die trigonometrische Form um |
cos(x)^4 |
|
50553 |
Bestimme den modulo 2π gleichen Winkel |
-120 |
|
50554 |
Solve for x in Radians |
4sin(x)^2=5-4cos(x) |
|
50555 |
Solve for θ in Degrees |
cot(theta)=-1 |
|
50556 |
Solve for x in Radians |
3csc(x)^2-4=0 |
|
50557 |
Solve for θ in Radians |
cos(theta)-1=0 |
|
50558 |
Rechne von Radiant in Grad um |
pi/2rad |
rad |
50559 |
Solve for θ in Radians |
sec(theta)-2=0 |
|
50560 |
Solve for θ in Degrees |
csc(theta)=-2 |
|
50561 |
Solve for x in Radians |
4sin(x)^2=5+4cos(x) |
|
50562 |
Solve for x in Radians |
2cos(x)+ Quadratwurzel von 3=0 |
|
50563 |
Solve for x in Radians |
cos(x)^2=2+2sin(x) |
|
50564 |
Wandle in die trigonometrische Form um |
csc(x)^2 |
|
50565 |
Wandle in die trigonometrische Form um |
sec(x) |
|
50566 |
Solve for θ in Radians |
csc(theta)+2=0 |
|
50567 |
Stelle fest, ob die Seiten ein rechtwinkliges Dreieck bilden. |
3 , 4 , 5 |
, , |
50568 |
Wandle in die trigonometrische Form um |
tan(theta)+cot(theta) |
|
50569 |
Bestimme den modulo 2π gleichen Winkel |
-(13pi)/2 |
|
50570 |
Solve for x in Radians |
4cos(x)^2=5+4sin(x) |
|
50571 |
Expandiere mithilfe von Summen-/Differenzformeln |
cos(90 Grad -theta) |
|
50572 |
Rechne von Radiant in Grad um |
1rad |
radian |
50573 |
Vereinfache mithilfe der Halbwinkelformel |
sin((5pi)/12) |
|
50574 |
Solve for x in Degrees |
cos(x)=-( Quadratwurzel von 3)/2 |
|
50575 |
Solve for θ in Degrees |
cos(theta)=0 |
|
50576 |
제IV사분면에서의 다른 삼각함수 값 구하기 |
tan(theta)=-1 |
|
50577 |
제II사분면에서의 다른 삼각함수 값 구하기 |
sin(theta)=1 |
|
50578 |
제II사분면에서의 다른 삼각함수 값 구하기 |
sin(theta)=( Quadratwurzel von 2)/2 |
|
50579 |
Expandiere mithilfe von Summen-/Differenzformeln |
cot(pi/2-x) |
|
50580 |
Solve for θ in Radians |
cot(theta)=-1 |
|
50581 |
Überprüfe die Identitätsgleichung |
csc(-x)-sin(-x)=-cos(x)cot(x) |
|
50582 |
Rechne von Radiant in Grad um |
- Quadratwurzel von 3 |
|
50583 |
Solve for x in Radians |
2cos(x)- Quadratwurzel von 2=0 |
|
50584 |
Wandle in die trigonometrische Form um |
sin(2x)^2 |
|
50585 |
Ermittele den Kotangens bei gegebenem Punkt |
(5/13,12/13) |
|
50586 |
Rechne von Radiant in Grad um |
3rad |
rad |
50587 |
Bestimme den modulo 2π gleichen Winkel |
-420 Grad |
|
50588 |
Ermittele den Kosekans bei gegebenem Punkt |
(5/13,12/13) |
|
50589 |
Solve for x in Radians |
4sin(x)=-cos(x)^2+4 |
|
50590 |
Solve for θ in Degrees |
tan(theta)=2/3 |
|
50591 |
Solve for θ in Radians |
Quadratwurzel von 3csc(theta)-2=0 |
|
50592 |
Ermittele den Kosekans bei gegebenem Punkt |
(-5/13,12/13) |
|
50593 |
Solve for x in Radians |
sin(x)-1=0 |
|
50594 |
Rechne von Radiant in Grad um |
Quadratwurzel von 2 |
|
50595 |
Vereinfache mithilfe der Halbwinkelformel |
sin(105 Grad ) |
|
50596 |
Ermittele den Sekans bei gegebenem Punkt |
(3,4) |
|
50597 |
Ermittele den Kotangens bei gegebenem Punkt |
(-3/5,4/5) |
|
50598 |
Solve for x in Degrees |
tan(x)=( Quadratwurzel von 3)/3 |
|
50599 |
Bestimme den modulo 2π gleichen Winkel |
-135 |
|
50600 |
Solve for x in Radians |
cos(x)^2=2-2sin(x) |
|