三角学 示例
tan(x)(sin(x)+cot(x)⋅cos(x))tan(x)(sin(x)+cot(x)⋅cos(x))
解题步骤 1
将 tan(x)tan(x) 重写为正弦和余弦形式。
sin(x)cos(x)(sin(x)+cot(x)⋅cos(x))sin(x)cos(x)(sin(x)+cot(x)⋅cos(x))
解题步骤 2
解题步骤 2.1
将 cot(x)cot(x) 重写为正弦和余弦形式。
sin(x)cos(x)(sin(x)+cos(x)sin(x)⋅cos(x))sin(x)cos(x)(sin(x)+cos(x)sin(x)⋅cos(x))
解题步骤 2.2
乘以 cos(x)sin(x)cos(x)cos(x)sin(x)cos(x)。
解题步骤 2.2.1
组合 cos(x)sin(x)cos(x)sin(x) 和 cos(x)cos(x)。
sin(x)cos(x)(sin(x)+cos(x)cos(x)sin(x))sin(x)cos(x)(sin(x)+cos(x)cos(x)sin(x))
解题步骤 2.2.2
对 cos(x)cos(x) 进行 11 次方运算。
sin(x)cos(x)(sin(x)+cos1(x)cos(x)sin(x))sin(x)cos(x)(sin(x)+cos1(x)cos(x)sin(x))
解题步骤 2.2.3
对 cos(x)cos(x) 进行 11 次方运算。
sin(x)cos(x)(sin(x)+cos1(x)cos1(x)sin(x))sin(x)cos(x)(sin(x)+cos1(x)cos1(x)sin(x))
解题步骤 2.2.4
使用幂法则 aman=am+naman=am+n 合并指数。
sin(x)cos(x)(sin(x)+cos(x)1+1sin(x))sin(x)cos(x)(sin(x)+cos(x)1+1sin(x))
解题步骤 2.2.5
将 11 和 11 相加。
sin(x)cos(x)(sin(x)+cos2(x)sin(x))sin(x)cos(x)(sin(x)+cos2(x)sin(x))
sin(x)cos(x)(sin(x)+cos2(x)sin(x))sin(x)cos(x)(sin(x)+cos2(x)sin(x))
sin(x)cos(x)(sin(x)+cos2(x)sin(x))sin(x)cos(x)(sin(x)+cos2(x)sin(x))
解题步骤 3
运用分配律。
sin(x)cos(x)sin(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin(x)cos(x)sin(x)+sin(x)cos(x)⋅cos2(x)sin(x)
解题步骤 4
解题步骤 4.1
组合 sin(x)cos(x)sin(x)cos(x) 和 sin(x)sin(x)。
sin(x)sin(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin(x)sin(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)
解题步骤 4.2
对 sin(x)sin(x) 进行 11 次方运算。
sin1(x)sin(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin1(x)sin(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)
解题步骤 4.3
对 sin(x)sin(x) 进行 11 次方运算。
sin1(x)sin1(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin1(x)sin1(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)
解题步骤 4.4
使用幂法则 aman=am+naman=am+n 合并指数。
sin(x)1+1cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin(x)1+1cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)
解题步骤 4.5
将 11 和 11 相加。
sin2(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin2(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)
sin2(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)sin2(x)cos(x)+sin(x)cos(x)⋅cos2(x)sin(x)
解题步骤 5
合并。
sin2(x)cos(x)+sin(x)cos2(x)cos(x)sin(x)sin2(x)cos(x)+sin(x)cos2(x)cos(x)sin(x)
解题步骤 6
解题步骤 6.1
约去 sin(x)sin(x) 的公因数。
解题步骤 6.1.1
约去公因数。
sin2(x)cos(x)+sin(x)cos2(x)cos(x)sin(x)
解题步骤 6.1.2
重写表达式。
sin2(x)cos(x)+cos2(x)cos(x)
sin2(x)cos(x)+cos2(x)cos(x)
解题步骤 6.2
约去 cos2(x) 和 cos(x) 的公因数。
解题步骤 6.2.1
从 cos2(x) 中分解出因数 cos(x)。
sin2(x)cos(x)+cos(x)cos(x)cos(x)
解题步骤 6.2.2
约去公因数。
解题步骤 6.2.2.1
乘以 1。
sin2(x)cos(x)+cos(x)cos(x)cos(x)⋅1
解题步骤 6.2.2.2
约去公因数。
sin2(x)cos(x)+cos(x)cos(x)cos(x)⋅1
解题步骤 6.2.2.3
重写表达式。
sin2(x)cos(x)+cos(x)1
解题步骤 6.2.2.4
用 cos(x) 除以 1。
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
解题步骤 7
解题步骤 7.1
从 sin2(x) 中分解出因数 sin(x)。
sin(x)sin(x)cos(x)+cos(x)
解题步骤 7.2
分离分数。
sin(x)1⋅sin(x)cos(x)+cos(x)
解题步骤 7.3
将 sin(x)cos(x) 转换成 tan(x)。
sin(x)1tan(x)+cos(x)
解题步骤 7.4
用 sin(x) 除以 1。
sin(x)tan(x)+cos(x)
sin(x)tan(x)+cos(x)