初级微积分 示例
f(θ)=3sin(2θ)f(θ)=3sin(2θ)
解题步骤 1
使用 asin(bx-c)+dasin(bx−c)+d 的形式求用于求振幅、周期、相移和垂直位移的变量。
a=3a=3
b=2b=2
c=0c=0
d=0d=0
解题步骤 2
求振幅 |a||a|。
振幅:33
解题步骤 3
解题步骤 3.1
函数的周期可利用 2π|b|2π|b| 进行计算。
2π|b|2π|b|
解题步骤 3.2
使用周期公式中的 22 替换 bb。
2π|2|2π|2|
解题步骤 3.3
绝对值就是一个数和零之间的距离。00 和 22 之间的距离为 22。
2π22π2
解题步骤 3.4
约去 22 的公因数。
解题步骤 3.4.1
约去公因数。
2π2
解题步骤 3.4.2
用 π 除以 1。
π
π
π
解题步骤 4
解题步骤 4.1
函数的相移可通过 cb 计算。
相移:cb
解题步骤 4.2
替换相移方程中 c 和 b 的值。
相移:02
解题步骤 4.3
用 0 除以 2。
相移:0
相移:0
解题步骤 5
列出三角函数的性质。
振幅:3
周期:π
相移:无
垂直位移:无
解题步骤 6
解题步骤 6.1
求在 x=0 处的点。
解题步骤 6.1.1
使用表达式中的 0 替换变量 x。
f(0)=3sin(2(0))
解题步骤 6.1.2
化简结果。
解题步骤 6.1.2.1
将 2 乘以 0。
f(0)=3sin(0)
解题步骤 6.1.2.2
sin(0) 的准确值为 0。
f(0)=3⋅0
解题步骤 6.1.2.3
将 3 乘以 0。
f(0)=0
解题步骤 6.1.2.4
最终答案为 0。
0
0
0
解题步骤 6.2
求在 x=π4 处的点。
解题步骤 6.2.1
使用表达式中的 π4 替换变量 x。
f(π4)=3sin(2(π4))
解题步骤 6.2.2
化简结果。
解题步骤 6.2.2.1
约去 2 的公因数。
解题步骤 6.2.2.1.1
从 4 中分解出因数 2。
f(π4)=3sin(2(π2(2)))
解题步骤 6.2.2.1.2
约去公因数。
f(π4)=3sin(2(π2⋅2))
解题步骤 6.2.2.1.3
重写表达式。
f(π4)=3sin(π2)
f(π4)=3sin(π2)
解题步骤 6.2.2.2
sin(π2) 的准确值为 1。
f(π4)=3⋅1
解题步骤 6.2.2.3
将 3 乘以 1。
f(π4)=3
解题步骤 6.2.2.4
最终答案为 3。
3
3
3
解题步骤 6.3
求在 x=π2 处的点。
解题步骤 6.3.1
使用表达式中的 π2 替换变量 x。
f(π2)=3sin(2(π2))
解题步骤 6.3.2
化简结果。
解题步骤 6.3.2.1
约去 2 的公因数。
解题步骤 6.3.2.1.1
约去公因数。
f(π2)=3sin(2(π2))
解题步骤 6.3.2.1.2
重写表达式。
f(π2)=3sin(π)
f(π2)=3sin(π)
解题步骤 6.3.2.2
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。
f(π2)=3sin(0)
解题步骤 6.3.2.3
sin(0) 的准确值为 0。
f(π2)=3⋅0
解题步骤 6.3.2.4
将 3 乘以 0。
f(π2)=0
解题步骤 6.3.2.5
最终答案为 0。
0
0
0
解题步骤 6.4
求在 x=3π4 处的点。
解题步骤 6.4.1
使用表达式中的 3π4 替换变量 x。
f(3π4)=3sin(2(3π4))
解题步骤 6.4.2
化简结果。
解题步骤 6.4.2.1
约去 2 的公因数。
解题步骤 6.4.2.1.1
从 4 中分解出因数 2。
f(3π4)=3sin(2(3π2(2)))
解题步骤 6.4.2.1.2
约去公因数。
f(3π4)=3sin(2(3π2⋅2))
解题步骤 6.4.2.1.3
重写表达式。
f(3π4)=3sin(3π2)
f(3π4)=3sin(3π2)
解题步骤 6.4.2.2
在第一象限中找出三角函数值与之相等的角,并使用这一参考角。令表达式取负值,因为正弦在第四象限为负。
f(3π4)=3(-sin(π2))
解题步骤 6.4.2.3
sin(π2) 的准确值为 1。
f(3π4)=3(-1⋅1)
解题步骤 6.4.2.4
乘以 3(-1⋅1)。
解题步骤 6.4.2.4.1
将 -1 乘以 1。
f(3π4)=3⋅-1
解题步骤 6.4.2.4.2
将 3 乘以 -1。
f(3π4)=-3
f(3π4)=-3
解题步骤 6.4.2.5
最终答案为 -3。
-3
-3
-3
解题步骤 6.5
求在 x=π 处的点。
解题步骤 6.5.1
使用表达式中的 π 替换变量 x。
f(π)=3sin(2(π))
解题步骤 6.5.2
化简结果。
解题步骤 6.5.2.1
减去 2π 的全角,直至角度大于等于0 且小于 2π。
f(π)=3sin(0)
解题步骤 6.5.2.2
sin(0) 的准确值为 0。
f(π)=3⋅0
解题步骤 6.5.2.3
将 3 乘以 0。
f(π)=0
解题步骤 6.5.2.4
最终答案为 0。
0
0
0
解题步骤 6.6
列出表中的点。
xf(x)00π43π203π4-3π0
xf(x)00π43π203π4-3π0
解题步骤 7
三角函数可通过振幅、周期、相移、垂直位移和相关点来绘制出其图象。
振幅:3
周期:π
相移:无
垂直位移:无
xf(x)00π43π203π4-3π0
解题步骤 8