初级微积分 示例

[1123021421232110]
解题步骤 1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
解题步骤 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|214123110|
解题步骤 1.4
Multiply element a11 by its cofactor.
1|214123110|
解题步骤 1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|123123110|
解题步骤 1.6
Multiply element a21 by its cofactor.
0|123123110|
解题步骤 1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|123214110|
解题步骤 1.8
Multiply element a31 by its cofactor.
2|123214110|
解题步骤 1.9
The minor for a41 is the determinant with row 4 and column 1 deleted.
|123214123|
解题步骤 1.10
Multiply element a41 by its cofactor.
-2|123214123|
解题步骤 1.11
Add the terms together.
1|214123110|+0|123123110|+2|123214110|-2|123214123|
1|214123110|+0|123123110|+2|123214110|-2|123214123|
解题步骤 2
0 乘以 |123123110|
1|214123110|+0+2|123214110|-2|123214123|
解题步骤 3
计算 |214123110|
点击获取更多步骤...
解题步骤 3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
点击获取更多步骤...
解题步骤 3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 3.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1423|
解题步骤 3.1.4
Multiply element a31 by its cofactor.
1|1423|
解题步骤 3.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|2413|
解题步骤 3.1.6
Multiply element a32 by its cofactor.
-1|2413|
解题步骤 3.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|2112|
解题步骤 3.1.8
Multiply element a33 by its cofactor.
0|2112|
解题步骤 3.1.9
Add the terms together.
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|
1(1|1423|-1|2413|+0|2112|)+0+2|123214110|-2|123214123|
解题步骤 3.2
0 乘以 |2112|
1(1|1423|-1|2413|+0)+0+2|123214110|-2|123214123|
解题步骤 3.3
计算 |1423|
点击获取更多步骤...
解题步骤 3.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1(1(13-24)-1|2413|+0)+0+2|123214110|-2|123214123|
解题步骤 3.3.2
化简行列式。
点击获取更多步骤...
解题步骤 3.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.3.2.1.1
3 乘以 1
1(1(3-24)-1|2413|+0)+0+2|123214110|-2|123214123|
解题步骤 3.3.2.1.2
-2 乘以 4
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|
1(1(3-8)-1|2413|+0)+0+2|123214110|-2|123214123|
解题步骤 3.3.2.2
3 中减去 8
1(1-5-1|2413|+0)+0+2|123214110|-2|123214123|
1(1-5-1|2413|+0)+0+2|123214110|-2|123214123|
1(1-5-1|2413|+0)+0+2|123214110|-2|123214123|
解题步骤 3.4
计算 |2413|
点击获取更多步骤...
解题步骤 3.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1(1-5-1(23-14)+0)+0+2|123214110|-2|123214123|
解题步骤 3.4.2
化简行列式。
点击获取更多步骤...
解题步骤 3.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 3.4.2.1.1
2 乘以 3
1(1-5-1(6-14)+0)+0+2|123214110|-2|123214123|
解题步骤 3.4.2.1.2
-1 乘以 4
1(1-5-1(6-4)+0)+0+2|123214110|-2|123214123|
1(1-5-1(6-4)+0)+0+2|123214110|-2|123214123|
解题步骤 3.4.2.2
6 中减去 4
1(1-5-12+0)+0+2|123214110|-2|123214123|
1(1-5-12+0)+0+2|123214110|-2|123214123|
1(1-5-12+0)+0+2|123214110|-2|123214123|
解题步骤 3.5
化简行列式。
点击获取更多步骤...
解题步骤 3.5.1
化简每一项。
点击获取更多步骤...
解题步骤 3.5.1.1
-5 乘以 1
1(-5-12+0)+0+2|123214110|-2|123214123|
解题步骤 3.5.1.2
-1 乘以 2
1(-5-2+0)+0+2|123214110|-2|123214123|
1(-5-2+0)+0+2|123214110|-2|123214123|
解题步骤 3.5.2
-5 中减去 2
1(-7+0)+0+2|123214110|-2|123214123|
解题步骤 3.5.3
-70 相加。
1-7+0+2|123214110|-2|123214123|
1-7+0+2|123214110|-2|123214123|
1-7+0+2|123214110|-2|123214123|
解题步骤 4
计算 |123214110|
点击获取更多步骤...
解题步骤 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
点击获取更多步骤...
解题步骤 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 4.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|2314|
解题步骤 4.1.4
Multiply element a31 by its cofactor.
1|2314|
解题步骤 4.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|1324|
解题步骤 4.1.6
Multiply element a32 by its cofactor.
-1|1324|
解题步骤 4.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|1221|
解题步骤 4.1.8
Multiply element a33 by its cofactor.
0|1221|
解题步骤 4.1.9
Add the terms together.
1-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|
1-7+0+2(1|2314|-1|1324|+0|1221|)-2|123214123|
解题步骤 4.2
0 乘以 |1221|
1-7+0+2(1|2314|-1|1324|+0)-2|123214123|
解题步骤 4.3
计算 |2314|
点击获取更多步骤...
解题步骤 4.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+2(1(24-13)-1|1324|+0)-2|123214123|
解题步骤 4.3.2
化简行列式。
点击获取更多步骤...
解题步骤 4.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.3.2.1.1
2 乘以 4
1-7+0+2(1(8-13)-1|1324|+0)-2|123214123|
解题步骤 4.3.2.1.2
-1 乘以 3
1-7+0+2(1(8-3)-1|1324|+0)-2|123214123|
1-7+0+2(1(8-3)-1|1324|+0)-2|123214123|
解题步骤 4.3.2.2
8 中减去 3
1-7+0+2(15-1|1324|+0)-2|123214123|
1-7+0+2(15-1|1324|+0)-2|123214123|
1-7+0+2(15-1|1324|+0)-2|123214123|
解题步骤 4.4
计算 |1324|
点击获取更多步骤...
解题步骤 4.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+2(15-1(14-23)+0)-2|123214123|
解题步骤 4.4.2
化简行列式。
点击获取更多步骤...
解题步骤 4.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.4.2.1.1
4 乘以 1
1-7+0+2(15-1(4-23)+0)-2|123214123|
解题步骤 4.4.2.1.2
-2 乘以 3
1-7+0+2(15-1(4-6)+0)-2|123214123|
1-7+0+2(15-1(4-6)+0)-2|123214123|
解题步骤 4.4.2.2
4 中减去 6
1-7+0+2(15-1-2+0)-2|123214123|
1-7+0+2(15-1-2+0)-2|123214123|
1-7+0+2(15-1-2+0)-2|123214123|
解题步骤 4.5
化简行列式。
点击获取更多步骤...
解题步骤 4.5.1
化简每一项。
点击获取更多步骤...
解题步骤 4.5.1.1
5 乘以 1
1-7+0+2(5-1-2+0)-2|123214123|
解题步骤 4.5.1.2
-1 乘以 -2
1-7+0+2(5+2+0)-2|123214123|
1-7+0+2(5+2+0)-2|123214123|
解题步骤 4.5.2
52 相加。
1-7+0+2(7+0)-2|123214123|
解题步骤 4.5.3
70 相加。
1-7+0+27-2|123214123|
1-7+0+27-2|123214123|
1-7+0+27-2|123214123|
解题步骤 5
计算 |123214123|
点击获取更多步骤...
解题步骤 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1423|
解题步骤 5.1.4
Multiply element a11 by its cofactor.
1|1423|
解题步骤 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2413|
解题步骤 5.1.6
Multiply element a12 by its cofactor.
-2|2413|
解题步骤 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2112|
解题步骤 5.1.8
Multiply element a13 by its cofactor.
3|2112|
解题步骤 5.1.9
Add the terms together.
1-7+0+27-2(1|1423|-2|2413|+3|2112|)
1-7+0+27-2(1|1423|-2|2413|+3|2112|)
解题步骤 5.2
计算 |1423|
点击获取更多步骤...
解题步骤 5.2.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+27-2(1(13-24)-2|2413|+3|2112|)
解题步骤 5.2.2
化简行列式。
点击获取更多步骤...
解题步骤 5.2.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.2.2.1.1
3 乘以 1
1-7+0+27-2(1(3-24)-2|2413|+3|2112|)
解题步骤 5.2.2.1.2
-2 乘以 4
1-7+0+27-2(1(3-8)-2|2413|+3|2112|)
1-7+0+27-2(1(3-8)-2|2413|+3|2112|)
解题步骤 5.2.2.2
3 中减去 8
1-7+0+27-2(1-5-2|2413|+3|2112|)
1-7+0+27-2(1-5-2|2413|+3|2112|)
1-7+0+27-2(1-5-2|2413|+3|2112|)
解题步骤 5.3
计算 |2413|
点击获取更多步骤...
解题步骤 5.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+27-2(1-5-2(23-14)+3|2112|)
解题步骤 5.3.2
化简行列式。
点击获取更多步骤...
解题步骤 5.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.3.2.1.1
2 乘以 3
1-7+0+27-2(1-5-2(6-14)+3|2112|)
解题步骤 5.3.2.1.2
-1 乘以 4
1-7+0+27-2(1-5-2(6-4)+3|2112|)
1-7+0+27-2(1-5-2(6-4)+3|2112|)
解题步骤 5.3.2.2
6 中减去 4
1-7+0+27-2(1-5-22+3|2112|)
1-7+0+27-2(1-5-22+3|2112|)
1-7+0+27-2(1-5-22+3|2112|)
解题步骤 5.4
计算 |2112|
点击获取更多步骤...
解题步骤 5.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
1-7+0+27-2(1-5-22+3(22-11))
解题步骤 5.4.2
化简行列式。
点击获取更多步骤...
解题步骤 5.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.4.2.1.1
2 乘以 2
1-7+0+27-2(1-5-22+3(4-11))
解题步骤 5.4.2.1.2
-1 乘以 1
1-7+0+27-2(1-5-22+3(4-1))
1-7+0+27-2(1-5-22+3(4-1))
解题步骤 5.4.2.2
4 中减去 1
1-7+0+27-2(1-5-22+33)
1-7+0+27-2(1-5-22+33)
1-7+0+27-2(1-5-22+33)
解题步骤 5.5
化简行列式。
点击获取更多步骤...
解题步骤 5.5.1
化简每一项。
点击获取更多步骤...
解题步骤 5.5.1.1
-5 乘以 1
1-7+0+27-2(-5-22+33)
解题步骤 5.5.1.2
-2 乘以 2
1-7+0+27-2(-5-4+33)
解题步骤 5.5.1.3
3 乘以 3
1-7+0+27-2(-5-4+9)
1-7+0+27-2(-5-4+9)
解题步骤 5.5.2
-5 中减去 4
1-7+0+27-2(-9+9)
解题步骤 5.5.3
-99 相加。
1-7+0+27-20
1-7+0+27-20
1-7+0+27-20
解题步骤 6
化简行列式。
点击获取更多步骤...
解题步骤 6.1
化简每一项。
点击获取更多步骤...
解题步骤 6.1.1
-7 乘以 1
-7+0+27-20
解题步骤 6.1.2
2 乘以 7
-7+0+14-20
解题步骤 6.1.3
-2 乘以 0
-7+0+14+0
-7+0+14+0
解题步骤 6.2
-70 相加。
-7+14+0
解题步骤 6.3
-714 相加。
7+0
解题步骤 6.4
70 相加。
7
7
输入您的问题
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay