初级微积分 示例

[0121110210100211]
解题步骤 1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 1 by its cofactor and add.
点击获取更多步骤...
解题步骤 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
解题步骤 1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|102010211|
解题步骤 1.4
Multiply element a11 by its cofactor.
0|102010211|
解题步骤 1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
|121010211|
解题步骤 1.6
Multiply element a21 by its cofactor.
-1|121010211|
解题步骤 1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
|121102211|
解题步骤 1.8
Multiply element a31 by its cofactor.
1|121102211|
解题步骤 1.9
The minor for a41 is the determinant with row 4 and column 1 deleted.
|121102010|
解题步骤 1.10
Multiply element a41 by its cofactor.
0|121102010|
解题步骤 1.11
Add the terms together.
0|102010211|-1|121010211|+1|121102211|+0|121102010|
0|102010211|-1|121010211|+1|121102211|+0|121102010|
解题步骤 2
0 乘以 |102010211|
0-1|121010211|+1|121102211|+0|121102010|
解题步骤 3
0 乘以 |121102010|
0-1|121010211|+1|121102211|+0
解题步骤 4
计算 |121010211|
点击获取更多步骤...
解题步骤 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
点击获取更多步骤...
解题步骤 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 4.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2111|
解题步骤 4.1.4
Multiply element a21 by its cofactor.
0|2111|
解题步骤 4.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1121|
解题步骤 4.1.6
Multiply element a22 by its cofactor.
1|1121|
解题步骤 4.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1221|
解题步骤 4.1.8
Multiply element a23 by its cofactor.
0|1221|
解题步骤 4.1.9
Add the terms together.
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+0
0-1(0|2111|+1|1121|+0|1221|)+1|121102211|+0
解题步骤 4.2
0 乘以 |2111|
0-1(0+1|1121|+0|1221|)+1|121102211|+0
解题步骤 4.3
0 乘以 |1221|
0-1(0+1|1121|+0)+1|121102211|+0
解题步骤 4.4
计算 |1121|
点击获取更多步骤...
解题步骤 4.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-1(0+1(11-21)+0)+1|121102211|+0
解题步骤 4.4.2
化简行列式。
点击获取更多步骤...
解题步骤 4.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 4.4.2.1.1
1 乘以 1
0-1(0+1(1-21)+0)+1|121102211|+0
解题步骤 4.4.2.1.2
-2 乘以 1
0-1(0+1(1-2)+0)+1|121102211|+0
0-1(0+1(1-2)+0)+1|121102211|+0
解题步骤 4.4.2.2
1 中减去 2
0-1(0+1-1+0)+1|121102211|+0
0-1(0+1-1+0)+1|121102211|+0
0-1(0+1-1+0)+1|121102211|+0
解题步骤 4.5
化简行列式。
点击获取更多步骤...
解题步骤 4.5.1
-1 乘以 1
0-1(0-1+0)+1|121102211|+0
解题步骤 4.5.2
0 中减去 1
0-1(-1+0)+1|121102211|+0
解题步骤 4.5.3
-10 相加。
0-1-1+1|121102211|+0
0-1-1+1|121102211|+0
0-1-1+1|121102211|+0
解题步骤 5
计算 |121102211|
点击获取更多步骤...
解题步骤 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
点击获取更多步骤...
解题步骤 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
解题步骤 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
解题步骤 5.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
|2111|
解题步骤 5.1.4
Multiply element a21 by its cofactor.
-1|2111|
解题步骤 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|1121|
解题步骤 5.1.6
Multiply element a22 by its cofactor.
0|1121|
解题步骤 5.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
|1221|
解题步骤 5.1.8
Multiply element a23 by its cofactor.
-2|1221|
解题步骤 5.1.9
Add the terms together.
0-1-1+1(-1|2111|+0|1121|-2|1221|)+0
0-1-1+1(-1|2111|+0|1121|-2|1221|)+0
解题步骤 5.2
0 乘以 |1121|
0-1-1+1(-1|2111|+0-2|1221|)+0
解题步骤 5.3
计算 |2111|
点击获取更多步骤...
解题步骤 5.3.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-1-1+1(-1(21-11)+0-2|1221|)+0
解题步骤 5.3.2
化简行列式。
点击获取更多步骤...
解题步骤 5.3.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.3.2.1.1
2 乘以 1
0-1-1+1(-1(2-11)+0-2|1221|)+0
解题步骤 5.3.2.1.2
-1 乘以 1
0-1-1+1(-1(2-1)+0-2|1221|)+0
0-1-1+1(-1(2-1)+0-2|1221|)+0
解题步骤 5.3.2.2
2 中减去 1
0-1-1+1(-11+0-2|1221|)+0
0-1-1+1(-11+0-2|1221|)+0
0-1-1+1(-11+0-2|1221|)+0
解题步骤 5.4
计算 |1221|
点击获取更多步骤...
解题步骤 5.4.1
可以使用公式 |abcd|=ad-cb2×2 矩阵的行列式。
0-1-1+1(-11+0-2(11-22))+0
解题步骤 5.4.2
化简行列式。
点击获取更多步骤...
解题步骤 5.4.2.1
化简每一项。
点击获取更多步骤...
解题步骤 5.4.2.1.1
1 乘以 1
0-1-1+1(-11+0-2(1-22))+0
解题步骤 5.4.2.1.2
-2 乘以 2
0-1-1+1(-11+0-2(1-4))+0
0-1-1+1(-11+0-2(1-4))+0
解题步骤 5.4.2.2
1 中减去 4
0-1-1+1(-11+0-2-3)+0
0-1-1+1(-11+0-2-3)+0
0-1-1+1(-11+0-2-3)+0
解题步骤 5.5
化简行列式。
点击获取更多步骤...
解题步骤 5.5.1
化简每一项。
点击获取更多步骤...
解题步骤 5.5.1.1
-1 乘以 1
0-1-1+1(-1+0-2-3)+0
解题步骤 5.5.1.2
-2 乘以 -3
0-1-1+1(-1+0+6)+0
0-1-1+1(-1+0+6)+0
解题步骤 5.5.2
-10 相加。
0-1-1+1(-1+6)+0
解题步骤 5.5.3
-16 相加。
0-1-1+15+0
0-1-1+15+0
0-1-1+15+0
解题步骤 6
化简行列式。
点击获取更多步骤...
解题步骤 6.1
化简每一项。
点击获取更多步骤...
解题步骤 6.1.1
-1 乘以 -1
0+1+15+0
解题步骤 6.1.2
5 乘以 1
0+1+5+0
0+1+5+0
解题步骤 6.2
01 相加。
1+5+0
解题步骤 6.3
15 相加。
6+0
解题步骤 6.4
60 相加。
6
6
输入您的问题
using Amazon.Auth.AccessControlPolicy;
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay