示例

[350750110]350750110
解题步骤 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
解题步骤 2
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 2.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
点击获取更多步骤...
解题步骤 2.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[335303750110]⎢ ⎢335303750110⎥ ⎥
解题步骤 2.1.2
化简 R1R1
[1530750110]⎢ ⎢1530750110⎥ ⎥
[1530750110]⎢ ⎢1530750110⎥ ⎥
解题步骤 2.2
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
点击获取更多步骤...
解题步骤 2.2.1
Perform the row operation R2=R2-7R1R2=R27R1 to make the entry at 2,12,1 a 00.
[15307-715-7(53)0-70110]⎢ ⎢ ⎢153077157(53)070110⎥ ⎥ ⎥
解题步骤 2.2.2
化简 R2R2
[15300-2030110]⎢ ⎢153002030110⎥ ⎥
[15300-2030110]⎢ ⎢153002030110⎥ ⎥
解题步骤 2.3
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
点击获取更多步骤...
解题步骤 2.3.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[15300-20301-11-530-0]⎢ ⎢ ⎢1530020301115300⎥ ⎥ ⎥
解题步骤 2.3.2
化简 R3R3
[15300-20300-230]⎢ ⎢ ⎢1530020300230⎥ ⎥ ⎥
[15300-20300-230]⎢ ⎢ ⎢1530020300230⎥ ⎥ ⎥
解题步骤 2.4
Multiply each element of R2R2 by -320320 to make the entry at 2,22,2 a 11.
点击获取更多步骤...
解题步骤 2.4.1
Multiply each element of R2R2 by -320320 to make the entry at 2,22,2 a 11.
[1530-3200-320(-203)-32000-230]⎢ ⎢ ⎢ ⎢15303200320(203)32000230⎥ ⎥ ⎥ ⎥
解题步骤 2.4.2
化简 R2R2
[15300100-230]⎢ ⎢15300100230⎥ ⎥
[15300100-230]⎢ ⎢15300100230⎥ ⎥
解题步骤 2.5
Perform the row operation R3=R3+23R2R3=R3+23R2 to make the entry at 3,23,2 a 00.
点击获取更多步骤...
解题步骤 2.5.1
Perform the row operation R3=R3+23R2R3=R3+23R2 to make the entry at 3,23,2 a 00.
[15300100+230-23+2310+230]⎢ ⎢15300100+23023+2310+230⎥ ⎥
解题步骤 2.5.2
化简 R3R3
[1530010000]⎢ ⎢1530010000⎥ ⎥
[1530010000]
解题步骤 2.6
Perform the row operation R1=R1-53R2 to make the entry at 1,2 a 0.
点击获取更多步骤...
解题步骤 2.6.1
Perform the row operation R1=R1-53R2 to make the entry at 1,2 a 0.
[1-53053-5310-530010000]
解题步骤 2.6.2
化简 R1
[100010000]
[100010000]
[100010000]
解题步骤 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
解题步骤 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
1
输入您的问题
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ] 
AmazonPay