线性代数 示例

[24681012120]24681012120
解题步骤 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
解题步骤 2
求行简化阶梯形矩阵。
点击获取更多步骤...
解题步骤 2.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
点击获取更多步骤...
解题步骤 2.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22426281012120]⎢ ⎢22426281012120⎥ ⎥
解题步骤 2.1.2
化简 R1R1
[12381012120]12381012120
[12381012120]12381012120
解题步骤 2.2
Perform the row operation R2=R2-8R1R2=R28R1 to make the entry at 2,12,1 a 00.
点击获取更多步骤...
解题步骤 2.2.1
Perform the row operation R2=R2-8R1R2=R28R1 to make the entry at 2,12,1 a 00.
[1238-8110-8212-83120]12388110821283120
解题步骤 2.2.2
化简 R2R2
[1230-6-12120]1230612120
[1230-6-12120]1230612120
解题步骤 2.3
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
点击获取更多步骤...
解题步骤 2.3.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[1230-6-121-12-20-3]1230612112203
解题步骤 2.3.2
化简 R3R3
[1230-6-1200-3]1230612003
[1230-6-1200-3]1230612003
解题步骤 2.4
Multiply each element of R2R2 by -1616 to make the entry at 2,22,2 a 11.
点击获取更多步骤...
解题步骤 2.4.1
Multiply each element of R2R2 by -1616 to make the entry at 2,22,2 a 11.
[123-160-16-6-16-1200-3]⎢ ⎢1231601661612003⎥ ⎥
解题步骤 2.4.2
化简 R2R2
[12301200-3]123012003
[12301200-3]123012003
解题步骤 2.5
Multiply each element of R3R3 by -1313 to make the entry at 3,33,3 a 11.
点击获取更多步骤...
解题步骤 2.5.1
Multiply each element of R3R3 by -1313 to make the entry at 3,33,3 a 11.
[123012-130-130-13-3]⎢ ⎢123012130130133⎥ ⎥
解题步骤 2.5.2
化简 R3R3
[123012001]123012001
[123012001]123012001
解题步骤 2.6
Perform the row operation R2=R2-2R3R2=R22R3 to make the entry at 2,32,3 a 00.
点击获取更多步骤...
解题步骤 2.6.1
Perform the row operation R2=R2-2R3R2=R22R3 to make the entry at 2,32,3 a 00.
[1230-201-202-21001]123020120221001
解题步骤 2.6.2
化简 R2R2
[123010001]123010001
[123010001]123010001
解题步骤 2.7
Perform the row operation R1=R1-3R3R1=R13R3 to make the entry at 1,31,3 a 00.
点击获取更多步骤...
解题步骤 2.7.1
Perform the row operation R1=R1-3R3R1=R13R3 to make the entry at 1,31,3 a 00.
[1-302-303-31010001]130230331010001
解题步骤 2.7.2
化简 R1R1
[120010001]120010001
[120010001]120010001
解题步骤 2.8
Perform the row operation R1=R1-2R2R1=R12R2 to make the entry at 1,21,2 a 00.
点击获取更多步骤...
解题步骤 2.8.1
Perform the row operation R1=R1-2R2R1=R12R2 to make the entry at 1,21,2 a 00.
[1-202-210-20010001]120221020010001
解题步骤 2.8.2
化简 R1R1
[100010001]100010001
[100010001]100010001
[100010001]100010001
解题步骤 3
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a11,a22, and a33a33
Pivot Columns: 1,2,1,2, and 33
解题步骤 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
00
输入您的问题
using Amazon.Auth.AccessControlPolicy;
Mathway 需要 javascript 和现代浏览器。
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay