线性代数 示例
[24681012120]⎡⎢⎣24681012120⎤⎥⎦
解题步骤 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
解题步骤 2
解题步骤 2.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
解题步骤 2.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[22426281012120]⎡⎢
⎢⎣22426281012120⎤⎥
⎥⎦
解题步骤 2.1.2
化简 R1R1。
[12381012120]⎡⎢⎣12381012120⎤⎥⎦
[12381012120]⎡⎢⎣12381012120⎤⎥⎦
解题步骤 2.2
Perform the row operation R2=R2-8R1R2=R2−8R1 to make the entry at 2,12,1 a 00.
解题步骤 2.2.1
Perform the row operation R2=R2-8R1R2=R2−8R1 to make the entry at 2,12,1 a 00.
[1238-8⋅110-8⋅212-8⋅3120]⎡⎢⎣1238−8⋅110−8⋅212−8⋅3120⎤⎥⎦
解题步骤 2.2.2
化简 R2R2。
[1230-6-12120]⎡⎢⎣1230−6−12120⎤⎥⎦
[1230-6-12120]⎡⎢⎣1230−6−12120⎤⎥⎦
解题步骤 2.3
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
解题步骤 2.3.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1230-6-121-12-20-3]⎡⎢⎣1230−6−121−12−20−3⎤⎥⎦
解题步骤 2.3.2
化简 R3R3。
[1230-6-1200-3]⎡⎢⎣1230−6−1200−3⎤⎥⎦
[1230-6-1200-3]⎡⎢⎣1230−6−1200−3⎤⎥⎦
解题步骤 2.4
Multiply each element of R2R2 by -16−16 to make the entry at 2,22,2 a 11.
解题步骤 2.4.1
Multiply each element of R2R2 by -16−16 to make the entry at 2,22,2 a 11.
[123-16⋅0-16⋅-6-16⋅-1200-3]⎡⎢
⎢⎣123−16⋅0−16⋅−6−16⋅−1200−3⎤⎥
⎥⎦
解题步骤 2.4.2
化简 R2R2。
[12301200-3]⎡⎢⎣12301200−3⎤⎥⎦
[12301200-3]⎡⎢⎣12301200−3⎤⎥⎦
解题步骤 2.5
Multiply each element of R3R3 by -13−13 to make the entry at 3,33,3 a 11.
解题步骤 2.5.1
Multiply each element of R3R3 by -13−13 to make the entry at 3,33,3 a 11.
[123012-13⋅0-13⋅0-13⋅-3]⎡⎢
⎢⎣123012−13⋅0−13⋅0−13⋅−3⎤⎥
⎥⎦
解题步骤 2.5.2
化简 R3R3。
[123012001]⎡⎢⎣123012001⎤⎥⎦
[123012001]⎡⎢⎣123012001⎤⎥⎦
解题步骤 2.6
Perform the row operation R2=R2-2R3R2=R2−2R3 to make the entry at 2,32,3 a 00.
解题步骤 2.6.1
Perform the row operation R2=R2-2R3R2=R2−2R3 to make the entry at 2,32,3 a 00.
[1230-2⋅01-2⋅02-2⋅1001]⎡⎢⎣1230−2⋅01−2⋅02−2⋅1001⎤⎥⎦
解题步骤 2.6.2
化简 R2R2。
[123010001]⎡⎢⎣123010001⎤⎥⎦
[123010001]⎡⎢⎣123010001⎤⎥⎦
解题步骤 2.7
Perform the row operation R1=R1-3R3R1=R1−3R3 to make the entry at 1,31,3 a 00.
解题步骤 2.7.1
Perform the row operation R1=R1-3R3R1=R1−3R3 to make the entry at 1,31,3 a 00.
[1-3⋅02-3⋅03-3⋅1010001]⎡⎢⎣1−3⋅02−3⋅03−3⋅1010001⎤⎥⎦
解题步骤 2.7.2
化简 R1R1。
[120010001]⎡⎢⎣120010001⎤⎥⎦
[120010001]⎡⎢⎣120010001⎤⎥⎦
解题步骤 2.8
Perform the row operation R1=R1-2R2R1=R1−2R2 to make the entry at 1,21,2 a 00.
解题步骤 2.8.1
Perform the row operation R1=R1-2R2R1=R1−2R2 to make the entry at 1,21,2 a 00.
[1-2⋅02-2⋅10-2⋅0010001]⎡⎢⎣1−2⋅02−2⋅10−2⋅0010001⎤⎥⎦
解题步骤 2.8.2
化简 R1R1。
[100010001]⎡⎢⎣100010001⎤⎥⎦
[100010001]⎡⎢⎣100010001⎤⎥⎦
[100010001]⎡⎢⎣100010001⎤⎥⎦
解题步骤 3
The pivot positions are the locations with the leading 11 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a11,a22, and a33a33
Pivot Columns: 1,2,1,2, and 33
解题步骤 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
00